Nuprl Lemma : singleton-type-void-domain
∀[A:Type]. ∀[B:A ⟶ Type].  singleton-type(a:A ⟶ B[a]) supposing ¬A
Proof
Definitions occuring in Statement : 
singleton-type: singleton-type(A)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
not: ¬A
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
singleton-type: singleton-type(A)
, 
exists: ∃x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
so_apply: x[s]
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
Lemmas referenced : 
it_wf, 
all_wf, 
equal_wf, 
not_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
introduction, 
sqequalRule, 
sqequalHypSubstitution, 
lambdaEquality, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
voidElimination, 
rename, 
dependent_pairFormation, 
lemma_by_obid, 
hypothesis, 
applyEquality, 
independent_functionElimination, 
cumulativity, 
lambdaFormation, 
functionExtensionality, 
functionEquality, 
isectElimination, 
universeEquality
Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].    singleton-type(a:A  {}\mrightarrow{}  B[a])  supposing  \mneg{}A
Date html generated:
2016_05_14-PM-04_02_07
Last ObjectModification:
2015_12_26-PM-07_43_17
Theory : equipollence!!cardinality!
Home
Index