Nuprl Lemma : singleton-type-void-domain

[A:Type]. ∀[B:A ⟶ Type].  singleton-type(a:A ⟶ B[a]) supposing ¬A


Proof




Definitions occuring in Statement :  singleton-type: singleton-type(A) uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] not: ¬A function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T not: ¬A implies:  Q false: False singleton-type: singleton-type(A) exists: x:A. B[x] subtype_rel: A ⊆B all: x:A. B[x] so_apply: x[s] prop: so_lambda: λ2x.t[x]
Lemmas referenced :  it_wf all_wf equal_wf not_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut introduction sqequalRule sqequalHypSubstitution lambdaEquality dependent_functionElimination thin hypothesisEquality voidElimination rename dependent_pairFormation lemma_by_obid hypothesis applyEquality independent_functionElimination cumulativity lambdaFormation functionExtensionality functionEquality isectElimination universeEquality

Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].    singleton-type(a:A  {}\mrightarrow{}  B[a])  supposing  \mneg{}A



Date html generated: 2016_05_14-PM-04_02_07
Last ObjectModification: 2015_12_26-PM-07_43_17

Theory : equipollence!!cardinality!


Home Index