Nuprl Lemma : top-equipollent-unit
Top ~ Unit
Proof
Definitions occuring in Statement : 
equipollent: A ~ B
, 
top: Top
, 
unit: Unit
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
top: Top
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
Lemmas referenced : 
equipollent-unit, 
top_wf
Rules used in proof : 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isectElimination, 
thin, 
hypothesis, 
independent_functionElimination, 
introduction, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_isectElimination, 
lambdaFormation, 
because_Cache
Latex:
Top  \msim{}  Unit
Date html generated:
2016_05_14-PM-04_00_57
Last ObjectModification:
2015_12_26-PM-07_43_48
Theory : equipollence!!cardinality!
Home
Index