Nuprl Lemma : altbarsep_wf

[T,S:Type].  (BarSep(T;S) ∈ ℙ)


Proof




Definitions occuring in Statement :  altbarsep: BarSep(T;S) uall: [x:A]. B[x] prop: member: t ∈ T universe: Type
Definitions unfolded in proof :  or: P ∨ Q implies:  Q nat: all: x:A. B[x] prop: altbarsep: BarSep(T;S) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  istype-universe altbar_wf altjbar_wf bool_wf int_seg_wf nat_wf
Rules used in proof :  universeEquality instantiate Error :isectIsTypeImplies,  Error :isect_memberEquality_alt,  Error :inhabitedIsType,  equalitySymmetry equalityTransitivity axiomEquality unionEquality hypothesisEquality rename setElimination natural_numberEquality thin isectElimination sqequalHypSubstitution hypothesis extract_by_obid functionEquality sqequalRule cut introduction Error :isect_memberFormation_alt,  sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[T,S:Type].    (BarSep(T;S)  \mmember{}  \mBbbP{})



Date html generated: 2019_06_20-PM-02_46_16
Last ObjectModification: 2019_06_06-AM-11_04_57

Theory : fan-theorem


Home Index