Nuprl Lemma : altbarsep_wf
∀[T,S:Type].  (BarSep(T;S) ∈ ℙ)
Proof
Definitions occuring in Statement : 
altbarsep: BarSep(T;S)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
or: P ∨ Q
, 
implies: P 
⇒ Q
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
prop: ℙ
, 
altbarsep: BarSep(T;S)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
istype-universe, 
altbar_wf, 
altjbar_wf, 
bool_wf, 
int_seg_wf, 
nat_wf
Rules used in proof : 
universeEquality, 
instantiate, 
Error :isectIsTypeImplies, 
Error :isect_memberEquality_alt, 
Error :inhabitedIsType, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
unionEquality, 
hypothesisEquality, 
rename, 
setElimination, 
natural_numberEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
hypothesis, 
extract_by_obid, 
functionEquality, 
sqequalRule, 
cut, 
introduction, 
Error :isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[T,S:Type].    (BarSep(T;S)  \mmember{}  \mBbbP{})
Date html generated:
2019_06_20-PM-02_46_16
Last ObjectModification:
2019_06_06-AM-11_04_57
Theory : fan-theorem
Home
Index