Nuprl Lemma : altjbar_wf

[T,S:Type]. ∀[X:n:ℕ ⟶ (ℕn ⟶ T) ⟶ 𝔹]. ∀[Y:n:ℕ ⟶ (ℕn ⟶ S) ⟶ 𝔹].  (jbar(X;Y) ∈ ℙ)


Proof




Definitions occuring in Statement :  altjbar: jbar(X;Y) int_seg: {i..j-} nat: bool: 𝔹 uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  implies:  Q not: ¬A false: False less_than': less_than'(a;b) and: P ∧ Q le: A ≤ B uimplies: supposing a nat: subtype_rel: A ⊆B exists: x:A. B[x] or: P ∨ Q all: x:A. B[x] prop: altjbar: jbar(X;Y) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  istype-universe bool_wf istype-nat subtype_rel_self istype-false int_seg_subtype_nat int_seg_wf subtype_rel_function assert_wf nat_wf
Rules used in proof :  universeEquality instantiate Error :inhabitedIsType,  Error :isectIsTypeImplies,  Error :isect_memberEquality_alt,  Error :universeIsType,  Error :functionIsType,  equalitySymmetry equalityTransitivity axiomEquality Error :lambdaFormation_alt,  independent_pairFormation independent_isectElimination because_Cache rename setElimination natural_numberEquality applyEquality thin isectElimination sqequalHypSubstitution productEquality unionEquality hypothesisEquality hypothesis extract_by_obid functionEquality sqequalRule cut introduction Error :isect_memberFormation_alt,  sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[T,S:Type].  \mforall{}[X:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  T)  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[Y:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  S)  {}\mrightarrow{}  \mBbbB{}].    (jbar(X;Y)  \mmember{}  \mBbbP{})



Date html generated: 2019_06_20-PM-02_46_13
Last ObjectModification: 2019_06_06-AM-10_49_33

Theory : fan-theorem


Home Index