Nuprl Lemma : altfan_wf

[T:Type]. (Fan(T) ∈ ℙ')


Proof




Definitions occuring in Statement :  altfan: Fan(T) uall: [x:A]. B[x] prop: member: t ∈ T universe: Type
Definitions unfolded in proof :  implies:  Q nat: all: x:A. B[x] prop: altfan: Fan(T) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  istype-universe altubar_wf altbar_wf bool_wf int_seg_wf nat_wf
Rules used in proof :  universeEquality instantiate equalitySymmetry equalityTransitivity axiomEquality hypothesisEquality rename setElimination natural_numberEquality thin isectElimination sqequalHypSubstitution hypothesis extract_by_obid cumulativity functionEquality sqequalRule cut introduction Error :isect_memberFormation_alt,  sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[T:Type].  (Fan(T)  \mmember{}  \mBbbP{}')



Date html generated: 2019_06_20-PM-02_46_02
Last ObjectModification: 2019_06_06-AM-10_58_45

Theory : fan-theorem


Home Index