Nuprl Lemma : altubar_wf

[T:Type]. ∀[X:n:ℕ ⟶ (ℕn ⟶ T) ⟶ 𝔹].  (uniformBar(X) ∈ ℙ)


Proof




Definitions occuring in Statement :  altubar: uniformBar(X) int_seg: {i..j-} nat: bool: 𝔹 uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  less_than': less_than'(a;b) subtype_rel: A ⊆B top: Top false: False satisfiable_int_formula: satisfiable_int_formula(fmla) implies:  Q not: ¬A uimplies: supposing a or: P ∨ Q decidable: Dec(P) ge: i ≥  squash: T less_than: a < b le: A ≤ B and: P ∧ Q lelt: i ≤ j < k int_seg: {i..j-} nat: all: x:A. B[x] exists: x:A. B[x] prop: altubar: uniformBar(X) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  istype-universe bool_wf istype-nat subtype_rel_self istype-false int_seg_subtype_nat subtype_rel_function istype-le int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma istype-void int_formula_prop_and_lemma istype-int itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf full-omega-unsat decidable__le nat_properties int_seg_properties assert_wf int_seg_wf nat_wf
Rules used in proof :  universeEquality instantiate Error :inhabitedIsType,  Error :isectIsTypeImplies,  Error :functionIsType,  equalitySymmetry equalityTransitivity axiomEquality Error :lambdaFormation_alt,  because_Cache Error :universeIsType,  independent_pairFormation voidElimination Error :isect_memberEquality_alt,  int_eqEquality Error :lambdaEquality_alt,  Error :dependent_pairFormation_alt,  independent_functionElimination approximateComputation independent_isectElimination unionElimination dependent_functionElimination imageElimination productElimination Error :dependent_set_memberEquality_alt,  applyEquality rename setElimination natural_numberEquality thin isectElimination sqequalHypSubstitution hypothesisEquality functionEquality hypothesis extract_by_obid productEquality sqequalRule cut introduction Error :isect_memberFormation_alt,  sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[T:Type].  \mforall{}[X:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  T)  {}\mrightarrow{}  \mBbbB{}].    (uniformBar(X)  \mmember{}  \mBbbP{})



Date html generated: 2019_06_20-PM-02_45_59
Last ObjectModification: 2019_06_06-AM-10_55_39

Theory : fan-theorem


Home Index