Nuprl Lemma : base-CP_wf

base-CP() ∈ ℙ


Proof




Definitions occuring in Statement :  base-CP: base-CP() prop: member: t ∈ T
Definitions unfolded in proof :  base-CP: base-CP() member: t ∈ T uall: [x:A]. B[x] so_lambda: λ2x.t[x] implies:  Q prop: isect2: T1 ⋂ T2 bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  subtype_rel: A ⊆B bfalse: ff nat: and: P ∧ Q cand: c∧ B uimplies: supposing a le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A so_apply: x[s] all: x:A. B[x]
Lemmas referenced :  all_wf isect2_wf nat_wf base_wf exists_wf int_seg_wf isect2_subtype_rel isect2_subtype_rel2 bool_wf equal_wf isect2_decomp int_seg_subtype_nat false_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin functionEquality hypothesis because_Cache lambdaEquality natural_numberEquality applyEquality functionExtensionality hypothesisEquality isect_memberEquality unionElimination equalityElimination setElimination rename productElimination independent_pairFormation equalityTransitivity equalitySymmetry independent_isectElimination lambdaFormation

Latex:
base-CP()  \mmember{}  \mBbbP{}



Date html generated: 2017_04_17-AM-09_40_54
Last ObjectModification: 2017_02_27-PM-05_35_52

Theory : fan-theorem


Home Index