Nuprl Lemma : dbar_wf

[T:Type]. ∀[X:(T List) ⟶ ℙ].  (dbar(T;X) ∈ ℙ)


Proof




Definitions occuring in Statement :  dbar: dbar(T;X) list: List uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T dbar: dbar(T;X) prop:
Lemmas referenced :  and_wf dec-predicate_wf list_wf tbar_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry functionEquality cumulativity universeEquality isect_memberEquality because_Cache

Latex:
\mforall{}[T:Type].  \mforall{}[X:(T  List)  {}\mrightarrow{}  \mBbbP{}].    (dbar(T;X)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_14-PM-04_09_20
Last ObjectModification: 2015_12_26-PM-07_54_36

Theory : fan-theorem


Home Index