Step
*
2
of Lemma
decidable-predicate-and
1. [T] : Type
2. [S] : Type
3. [A] : T ⟶ ℙ
4. [B] : S ⟶ ℙ
5. t : T@i
6. A t@i
7. s : S@i
8. B s@i
9. ∀p:T × S. Dec(predicate-and(A;B) p)@i
10. y : S@i
⊢ Dec(B y)
BY
{ ((With ⌜<t, y>⌝ (D (-2))⋅ THENA Auto) THEN RepUR ``predicate-and`` -1 THEN D -1) }
1
1. [T] : Type
2. [S] : Type
3. [A] : T ⟶ ℙ
4. [B] : S ⟶ ℙ
5. t : T@i
6. A t@i
7. s : S@i
8. B s@i
9. y : S@i
10. (A t) ∧ (B y)@i
⊢ Dec(B y)
2
1. [T] : Type
2. [S] : Type
3. [A] : T ⟶ ℙ
4. [B] : S ⟶ ℙ
5. t : T@i
6. A t@i
7. s : S@i
8. B s@i
9. y : S@i
10. ¬((A t) ∧ (B y))@i
⊢ Dec(B y)
Latex:
Latex:
1. [T] : Type
2. [S] : Type
3. [A] : T {}\mrightarrow{} \mBbbP{}
4. [B] : S {}\mrightarrow{} \mBbbP{}
5. t : T@i
6. A t@i
7. s : S@i
8. B s@i
9. \mforall{}p:T \mtimes{} S. Dec(predicate-and(A;B) p)@i
10. y : S@i
\mvdash{} Dec(B y)
By
Latex:
((With \mkleeneopen{}<t, y>\mkleeneclose{} (D (-2))\mcdot{} THENA Auto) THEN RepUR ``predicate-and`` -1 THEN D -1)
Home
Index