Nuprl Lemma : decidable__tree-big
∀[T:Type]. ∀[A:(T List) ⟶ ℙ].  ((∃k:ℕ. T ~ ℕk) 
⇒ Decidable(A) 
⇒ (∀n:ℕ. Dec(tree-big(T;A;n))))
Proof
Definitions occuring in Statement : 
tree-big: tree-big(T;A;n)
, 
dec-predicate: Decidable(X)
, 
equipollent: A ~ B
, 
list: T List
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
decidable: Dec(P)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
universe: Type
Definitions unfolded in proof : 
tree-big: tree-big(T;A;n)
, 
dec-predicate: Decidable(X)
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
prop: ℙ
, 
nat: ℕ
Lemmas referenced : 
decidable__all_length, 
list_wf, 
nat_wf, 
all_wf, 
decidable_wf, 
exists_wf, 
equipollent_wf, 
int_seg_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaEquality, 
applyEquality, 
hypothesis, 
independent_functionElimination, 
dependent_functionElimination, 
natural_numberEquality, 
setElimination, 
rename, 
functionEquality, 
cumulativity, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[A:(T  List)  {}\mrightarrow{}  \mBbbP{}].    ((\mexists{}k:\mBbbN{}.  T  \msim{}  \mBbbN{}k)  {}\mRightarrow{}  Decidable(A)  {}\mRightarrow{}  (\mforall{}n:\mBbbN{}.  Dec(tree-big(T;A;n))))
Date html generated:
2016_05_14-PM-04_10_08
Last ObjectModification:
2015_12_26-PM-07_54_23
Theory : fan-theorem
Home
Index