Nuprl Lemma : decidable__tree-big

[T:Type]. ∀[A:(T List) ⟶ ℙ].  ((∃k:ℕ~ ℕk)  Decidable(A)  (∀n:ℕDec(tree-big(T;A;n))))


Proof




Definitions occuring in Statement :  tree-big: tree-big(T;A;n) dec-predicate: Decidable(X) equipollent: B list: List int_seg: {i..j-} nat: decidable: Dec(P) uall: [x:A]. B[x] prop: all: x:A. B[x] exists: x:A. B[x] implies:  Q function: x:A ⟶ B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  tree-big: tree-big(T;A;n) dec-predicate: Decidable(X) uall: [x:A]. B[x] implies:  Q all: x:A. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] prop: nat:
Lemmas referenced :  decidable__all_length list_wf nat_wf all_wf decidable_wf exists_wf equipollent_wf int_seg_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaEquality applyEquality hypothesis independent_functionElimination dependent_functionElimination natural_numberEquality setElimination rename functionEquality cumulativity universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[A:(T  List)  {}\mrightarrow{}  \mBbbP{}].    ((\mexists{}k:\mBbbN{}.  T  \msim{}  \mBbbN{}k)  {}\mRightarrow{}  Decidable(A)  {}\mRightarrow{}  (\mforall{}n:\mBbbN{}.  Dec(tree-big(T;A;n))))



Date html generated: 2016_05_14-PM-04_10_08
Last ObjectModification: 2015_12_26-PM-07_54_23

Theory : fan-theorem


Home Index