Nuprl Lemma : decidable__all_length

[T:Type]. ∀[P:(T List) ⟶ ℙ].
  ((∀L:T List. Dec(P[L]))  (∃k:ℕ~ ℕk)  (∀n:ℕDec(∀L:T List. ((||L|| n ∈ ℤ P[L]))))


Proof




Definitions occuring in Statement :  equipollent: B length: ||as|| list: List int_seg: {i..j-} nat: decidable: Dec(P) uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] implies:  Q function: x:A ⟶ B[x] natural_number: $n int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  guard: {T} false: False not: ¬A or: P ∨ Q decidable: Dec(P) istype: istype(T) prop: uimplies: supposing a so_apply: x[s] so_lambda: λ2x.t[x] nat: subtype_rel: A ⊆B member: t ∈ T exists: x:A. B[x] all: x:A. B[x] implies:  Q uall: [x:A]. B[x]
Lemmas referenced :  istype-universe decidable_wf int_seg_wf equipollent_wf istype-nat istype-void subtype_rel_self subtype_rel_dep_function equipollent-list exp_wf4 int_subtype_base istype-int le_wf set_subtype_base length_wf_nat equal-wf-base list_wf decidable__all_finite
Rules used in proof :  equalityTransitivity Error :inhabitedIsType,  Error :dependent_set_memberEquality_alt,  Error :productIsType,  Error :inrFormation_alt,  Error :functionIsType,  Error :inlFormation_alt,  unionElimination rename setElimination equalitySymmetry sqequalBase baseClosed closedConclusion baseApply Error :equalityIstype,  Error :setIsType,  Error :universeIsType,  universeEquality cumulativity instantiate independent_functionElimination dependent_functionElimination because_Cache independent_isectElimination natural_numberEquality Error :lambdaEquality_alt,  sqequalRule applyEquality intEquality hypothesis hypothesisEquality setEquality isectElimination extract_by_obid introduction cut thin productElimination sqequalHypSubstitution Error :lambdaFormation_alt,  Error :isect_memberFormation_alt,  sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[T:Type].  \mforall{}[P:(T  List)  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}L:T  List.  Dec(P[L]))  {}\mRightarrow{}  (\mexists{}k:\mBbbN{}.  T  \msim{}  \mBbbN{}k)  {}\mRightarrow{}  (\mforall{}n:\mBbbN{}.  Dec(\mforall{}L:T  List.  ((||L||  =  n)  {}\mRightarrow{}  P[L]))))



Date html generated: 2019_06_20-PM-02_19_35
Last ObjectModification: 2019_06_06-PM-00_17_31

Theory : equipollence!!cardinality!


Home Index