Nuprl Lemma : dfan_wf
∀[T:Type]. (Fan_d(T) ∈ ℙ')
Proof
Definitions occuring in Statement : 
dfan: Fan_d(T)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
dfan: Fan_d(T)
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
so_apply: x[s]
Lemmas referenced : 
all_wf, 
list_wf, 
dbar_wf, 
ubar_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
thin, 
instantiate, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
functionEquality, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
universeEquality, 
lambdaEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[T:Type].  (Fan\_d(T)  \mmember{}  \mBbbP{}')
Date html generated:
2016_05_14-PM-04_09_22
Last ObjectModification:
2015_12_26-PM-07_54_35
Theory : fan-theorem
Home
Index