Nuprl Lemma : dfan_wf

[T:Type]. (Fan_d(T) ∈ ℙ')


Proof




Definitions occuring in Statement :  dfan: Fan_d(T) uall: [x:A]. B[x] prop: member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T dfan: Fan_d(T) prop: so_lambda: λ2x.t[x] implies:  Q so_apply: x[s]
Lemmas referenced :  all_wf list_wf dbar_wf ubar_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule thin instantiate lemma_by_obid sqequalHypSubstitution isectElimination functionEquality cumulativity hypothesisEquality hypothesis universeEquality lambdaEquality axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[T:Type].  (Fan\_d(T)  \mmember{}  \mBbbP{}')



Date html generated: 2016_05_14-PM-04_09_22
Last ObjectModification: 2015_12_26-PM-07_54_35

Theory : fan-theorem


Home Index