Step * 1 1 3 of Lemma fan-implies-nwkl!-using-PFan


1. Fan
2. (𝔹 List) ⟶ ℙ
3. ∀as:𝔹 List. Dec(t as)
4. infinite-tree(t)
5. eff-unique(t)
6. ∀n:ℕ. ∀ss:((𝔹 × 𝔹List) ⟶ ℙ.
     ((∀bc:(𝔹 × 𝔹List. Dec(ss bc))
      (∀bc,bc':(𝔹 × 𝔹List.  (bc ≤ bc'  (ss bc)  (ss bc')))
      (∀gh:ℕ ⟶ (𝔹 × 𝔹)
           ((¬(map(λi.(fst((gh i)));upto(n)) map(λi.(snd((gh i)));upto(n)) ∈ (𝔹 List)))
            (∃m:ℕ(ss map(gh;upto(m))))))
      (∃k:ℕ
          ∀gh:ℕ ⟶ (𝔹 × 𝔹)
            ((¬(map(λi.(fst((gh i)));upto(n)) map(λi.(snd((gh i)));upto(n)) ∈ (𝔹 List)))  (ss map(gh;upto(k))))))
7. : ℕ
8. ∀ss:((𝔹 × 𝔹List) ⟶ ℙ
     ((∀bc:(𝔹 × 𝔹List. Dec(ss bc))
      (∀bc,bc':(𝔹 × 𝔹List.  (bc ≤ bc'  (ss bc)  (ss bc')))
      (∀gh:ℕ ⟶ (𝔹 × 𝔹)
           ((¬(map(λi.(fst((gh i)));upto(n)) map(λi.(snd((gh i)));upto(n)) ∈ (𝔹 List)))
            (∃m:ℕ(ss map(gh;upto(m))))))
      (∃k:ℕ
          ∀gh:ℕ ⟶ (𝔹 × 𝔹)
            ((¬(map(λi.(fst((gh i)));upto(n)) map(λi.(snd((gh i)));upto(n)) ∈ (𝔹 List)))  (ss map(gh;upto(k))))))
9. ∃k:ℕ
    ∀gh:ℕ ⟶ (𝔹 × 𝔹)
      ((¬(map(λi.(fst((gh i)));upto(n)) map(λi.(snd((gh i)));upto(n)) ∈ (𝔹 List)))
       ((λbc.(¬((t map(λp.(fst(p));bc)) ∧ (t map(λp.(snd(p));bc))))) map(gh;upto(k))))
⊢ ∃k:ℕ
   ((n ≤ k)
   ∧ (∀b,c:𝔹 List.  ((||b|| k ∈ ℤ (||c|| k ∈ ℤ (t b)  (t c)  (firstn(n;b) firstn(n;c) ∈ (𝔹 List)))))
BY
(Assert ∃k:ℕ
           (n < k
           ∧ (∀gh:ℕ ⟶ (𝔹 × 𝔹)
                ((¬(map(λi.(fst((gh i)));upto(n)) map(λi.(snd((gh i)));upto(n)) ∈ (𝔹 List)))
                 ((λbc.(¬((t map(λp.(fst(p));bc)) ∧ (t map(λp.(snd(p));bc))))) map(gh;upto(k)))))) BY
         (D -1 THEN (With ⌜imax(k;n 1)⌝ (D 0)⋅ THENA Auto))) }

1
.....aux..... 
1. Fan
2. (𝔹 List) ⟶ ℙ
3. ∀as:𝔹 List. Dec(t as)
4. infinite-tree(t)
5. eff-unique(t)
6. ∀n:ℕ. ∀ss:((𝔹 × 𝔹List) ⟶ ℙ.
     ((∀bc:(𝔹 × 𝔹List. Dec(ss bc))
      (∀bc,bc':(𝔹 × 𝔹List.  (bc ≤ bc'  (ss bc)  (ss bc')))
      (∀gh:ℕ ⟶ (𝔹 × 𝔹)
           ((¬(map(λi.(fst((gh i)));upto(n)) map(λi.(snd((gh i)));upto(n)) ∈ (𝔹 List)))
            (∃m:ℕ(ss map(gh;upto(m))))))
      (∃k:ℕ
          ∀gh:ℕ ⟶ (𝔹 × 𝔹)
            ((¬(map(λi.(fst((gh i)));upto(n)) map(λi.(snd((gh i)));upto(n)) ∈ (𝔹 List)))  (ss map(gh;upto(k))))))
7. : ℕ
8. ∀ss:((𝔹 × 𝔹List) ⟶ ℙ
     ((∀bc:(𝔹 × 𝔹List. Dec(ss bc))
      (∀bc,bc':(𝔹 × 𝔹List.  (bc ≤ bc'  (ss bc)  (ss bc')))
      (∀gh:ℕ ⟶ (𝔹 × 𝔹)
           ((¬(map(λi.(fst((gh i)));upto(n)) map(λi.(snd((gh i)));upto(n)) ∈ (𝔹 List)))
            (∃m:ℕ(ss map(gh;upto(m))))))
      (∃k:ℕ
          ∀gh:ℕ ⟶ (𝔹 × 𝔹)
            ((¬(map(λi.(fst((gh i)));upto(n)) map(λi.(snd((gh i)));upto(n)) ∈ (𝔹 List)))  (ss map(gh;upto(k))))))
9. : ℕ
10. ∀gh:ℕ ⟶ (𝔹 × 𝔹)
      ((¬(map(λi.(fst((gh i)));upto(n)) map(λi.(snd((gh i)));upto(n)) ∈ (𝔹 List)))
       ((λbc.(¬((t map(λp.(fst(p));bc)) ∧ (t map(λp.(snd(p));bc))))) map(gh;upto(k))))
⊢ n < imax(k;n 1)
∧ (∀gh:ℕ ⟶ (𝔹 × 𝔹)
     ((¬(map(λi.(fst((gh i)));upto(n)) map(λi.(snd((gh i)));upto(n)) ∈ (𝔹 List)))
      ((λbc.(¬((t map(λp.(fst(p));bc)) ∧ (t map(λp.(snd(p));bc))))) map(gh;upto(imax(k;n 1))))))

2
1. Fan
2. (𝔹 List) ⟶ ℙ
3. ∀as:𝔹 List. Dec(t as)
4. infinite-tree(t)
5. eff-unique(t)
6. ∀n:ℕ. ∀ss:((𝔹 × 𝔹List) ⟶ ℙ.
     ((∀bc:(𝔹 × 𝔹List. Dec(ss bc))
      (∀bc,bc':(𝔹 × 𝔹List.  (bc ≤ bc'  (ss bc)  (ss bc')))
      (∀gh:ℕ ⟶ (𝔹 × 𝔹)
           ((¬(map(λi.(fst((gh i)));upto(n)) map(λi.(snd((gh i)));upto(n)) ∈ (𝔹 List)))
            (∃m:ℕ(ss map(gh;upto(m))))))
      (∃k:ℕ
          ∀gh:ℕ ⟶ (𝔹 × 𝔹)
            ((¬(map(λi.(fst((gh i)));upto(n)) map(λi.(snd((gh i)));upto(n)) ∈ (𝔹 List)))  (ss map(gh;upto(k))))))
7. : ℕ
8. ∀ss:((𝔹 × 𝔹List) ⟶ ℙ
     ((∀bc:(𝔹 × 𝔹List. Dec(ss bc))
      (∀bc,bc':(𝔹 × 𝔹List.  (bc ≤ bc'  (ss bc)  (ss bc')))
      (∀gh:ℕ ⟶ (𝔹 × 𝔹)
           ((¬(map(λi.(fst((gh i)));upto(n)) map(λi.(snd((gh i)));upto(n)) ∈ (𝔹 List)))
            (∃m:ℕ(ss map(gh;upto(m))))))
      (∃k:ℕ
          ∀gh:ℕ ⟶ (𝔹 × 𝔹)
            ((¬(map(λi.(fst((gh i)));upto(n)) map(λi.(snd((gh i)));upto(n)) ∈ (𝔹 List)))  (ss map(gh;upto(k))))))
9. ∃k:ℕ
    ∀gh:ℕ ⟶ (𝔹 × 𝔹)
      ((¬(map(λi.(fst((gh i)));upto(n)) map(λi.(snd((gh i)));upto(n)) ∈ (𝔹 List)))
       ((λbc.(¬((t map(λp.(fst(p));bc)) ∧ (t map(λp.(snd(p));bc))))) map(gh;upto(k))))
10. ∃k:ℕ
     (n < k
     ∧ (∀gh:ℕ ⟶ (𝔹 × 𝔹)
          ((¬(map(λi.(fst((gh i)));upto(n)) map(λi.(snd((gh i)));upto(n)) ∈ (𝔹 List)))
           ((λbc.(¬((t map(λp.(fst(p));bc)) ∧ (t map(λp.(snd(p));bc))))) map(gh;upto(k))))))
⊢ ∃k:ℕ
   ((n ≤ k)
   ∧ (∀b,c:𝔹 List.  ((||b|| k ∈ ℤ (||c|| k ∈ ℤ (t b)  (t c)  (firstn(n;b) firstn(n;c) ∈ (𝔹 List)))))


Latex:


Latex:

1.  Fan
2.  t  :  (\mBbbB{}  List)  {}\mrightarrow{}  \mBbbP{}
3.  \mforall{}as:\mBbbB{}  List.  Dec(t  as)
4.  infinite-tree(t)
5.  eff-unique(t)
6.  \mforall{}n:\mBbbN{}.  \mforall{}ss:((\mBbbB{}  \mtimes{}  \mBbbB{})  List)  {}\mrightarrow{}  \mBbbP{}.
          ((\mforall{}bc:(\mBbbB{}  \mtimes{}  \mBbbB{})  List.  Dec(ss  bc))
          {}\mRightarrow{}  (\mforall{}bc,bc':(\mBbbB{}  \mtimes{}  \mBbbB{})  List.    (bc  \mleq{}  bc'  {}\mRightarrow{}  (ss  bc)  {}\mRightarrow{}  (ss  bc')))
          {}\mRightarrow{}  (\mforall{}gh:\mBbbN{}  {}\mrightarrow{}  (\mBbbB{}  \mtimes{}  \mBbbB{})
                      ((\mneg{}(map(\mlambda{}i.(fst((gh  i)));upto(n))  =  map(\mlambda{}i.(snd((gh  i)));upto(n))))
                      {}\mRightarrow{}  (\mexists{}m:\mBbbN{}.  (ss  map(gh;upto(m))))))
          {}\mRightarrow{}  (\mexists{}k:\mBbbN{}
                    \mforall{}gh:\mBbbN{}  {}\mrightarrow{}  (\mBbbB{}  \mtimes{}  \mBbbB{})
                        ((\mneg{}(map(\mlambda{}i.(fst((gh  i)));upto(n))  =  map(\mlambda{}i.(snd((gh  i)));upto(n))))
                        {}\mRightarrow{}  (ss  map(gh;upto(k))))))
7.  n  :  \mBbbN{}
8.  \mforall{}ss:((\mBbbB{}  \mtimes{}  \mBbbB{})  List)  {}\mrightarrow{}  \mBbbP{}
          ((\mforall{}bc:(\mBbbB{}  \mtimes{}  \mBbbB{})  List.  Dec(ss  bc))
          {}\mRightarrow{}  (\mforall{}bc,bc':(\mBbbB{}  \mtimes{}  \mBbbB{})  List.    (bc  \mleq{}  bc'  {}\mRightarrow{}  (ss  bc)  {}\mRightarrow{}  (ss  bc')))
          {}\mRightarrow{}  (\mforall{}gh:\mBbbN{}  {}\mrightarrow{}  (\mBbbB{}  \mtimes{}  \mBbbB{})
                      ((\mneg{}(map(\mlambda{}i.(fst((gh  i)));upto(n))  =  map(\mlambda{}i.(snd((gh  i)));upto(n))))
                      {}\mRightarrow{}  (\mexists{}m:\mBbbN{}.  (ss  map(gh;upto(m))))))
          {}\mRightarrow{}  (\mexists{}k:\mBbbN{}
                    \mforall{}gh:\mBbbN{}  {}\mrightarrow{}  (\mBbbB{}  \mtimes{}  \mBbbB{})
                        ((\mneg{}(map(\mlambda{}i.(fst((gh  i)));upto(n))  =  map(\mlambda{}i.(snd((gh  i)));upto(n))))
                        {}\mRightarrow{}  (ss  map(gh;upto(k))))))
9.  \mexists{}k:\mBbbN{}
        \mforall{}gh:\mBbbN{}  {}\mrightarrow{}  (\mBbbB{}  \mtimes{}  \mBbbB{})
            ((\mneg{}(map(\mlambda{}i.(fst((gh  i)));upto(n))  =  map(\mlambda{}i.(snd((gh  i)));upto(n))))
            {}\mRightarrow{}  ((\mlambda{}bc.(\mneg{}((t  map(\mlambda{}p.(fst(p));bc))  \mwedge{}  (t  map(\mlambda{}p.(snd(p));bc)))))  map(gh;upto(k))))
\mvdash{}  \mexists{}k:\mBbbN{}
      ((n  \mleq{}  k)
      \mwedge{}  (\mforall{}b,c:\mBbbB{}  List.    ((||b||  =  k)  {}\mRightarrow{}  (||c||  =  k)  {}\mRightarrow{}  (t  b)  {}\mRightarrow{}  (t  c)  {}\mRightarrow{}  (firstn(n;b)  =  firstn(n;c)))))


By


Latex:
(Assert  \mexists{}k:\mBbbN{}
                  (n  <  k
                  \mwedge{}  (\mforall{}gh:\mBbbN{}  {}\mrightarrow{}  (\mBbbB{}  \mtimes{}  \mBbbB{})
                            ((\mneg{}(map(\mlambda{}i.(fst((gh  i)));upto(n))  =  map(\mlambda{}i.(snd((gh  i)));upto(n))))
                            {}\mRightarrow{}  ((\mlambda{}bc.(\mneg{}((t  map(\mlambda{}p.(fst(p));bc))  \mwedge{}  (t  map(\mlambda{}p.(snd(p));bc))))) 
                                    map(gh;upto(k))))))  BY
              (D  -1  THEN  (With  \mkleeneopen{}imax(k;n  +  1)\mkleeneclose{}  (D  0)\mcdot{}  THENA  Auto)))




Home Index