Step
*
1
2
1
1
of Lemma
fan-implies-nwkl!-using-PFan
1. Fan
2. t : (š¹ List) ā¶ ā
3. āas:š¹ List. Dec(t as)
4. āas,bs:š¹ List. (as ā¤ bs
ā (t bs)
ā (t as))
5. eff-unique(t)
6. ān:ā
āk:ā
((n ā¤ k)
ā§ (āb,c:š¹ List.
((||b|| = k ā ā¤)
ā (||c|| = k ā ā¤)
ā (t b)
ā (t c)
ā (firstn(n;b) = firstn(n;c) ā (š¹ List)))))
7. a : n:ā ā¶ (š¹ List)
8. ān:ā. ((||a n|| = n ā ā¤) ā§ (t (a n)))
9. k0 : n:ā ā¶ ā
10. ān:ā
((n ā¤ (k0 n))
ā§ (āb,c:š¹ List.
((||b|| = (k0 n) ā ā¤)
ā (||c|| = (k0 n) ā ā¤)
ā (t b)
ā (t c)
ā (firstn(n;b) = firstn(n;c) ā (š¹ List)))))
11. k : ā ā¶ ā¤
12. āi,j:ā. ((i ā¤ j)
ā ((k i) ā¤ (k j)))
13. ān:ā. ((k0 n) ā¤ (k n))
ā¢ āf:ā ā¶ š¹. is-path(t;f)
BY
{ ((Assert ān:ā. (n ā¤ (k n)) BY
(ParallelLast THEN Auto' THEN InstHyp [ānā] (-6)ā
THEN Auto'))
THEN (Assert ān:ā. (0 ā¤ (k n)) BY
(ParallelLast THEN Auto'))
) }
1
1. Fan
2. t : (š¹ List) ā¶ ā
3. āas:š¹ List. Dec(t as)
4. āas,bs:š¹ List. (as ā¤ bs
ā (t bs)
ā (t as))
5. eff-unique(t)
6. ān:ā
āk:ā
((n ā¤ k)
ā§ (āb,c:š¹ List.
((||b|| = k ā ā¤)
ā (||c|| = k ā ā¤)
ā (t b)
ā (t c)
ā (firstn(n;b) = firstn(n;c) ā (š¹ List)))))
7. a : n:ā ā¶ (š¹ List)
8. ān:ā. ((||a n|| = n ā ā¤) ā§ (t (a n)))
9. k0 : n:ā ā¶ ā
10. ān:ā
((n ā¤ (k0 n))
ā§ (āb,c:š¹ List.
((||b|| = (k0 n) ā ā¤)
ā (||c|| = (k0 n) ā ā¤)
ā (t b)
ā (t c)
ā (firstn(n;b) = firstn(n;c) ā (š¹ List)))))
11. k : ā ā¶ ā¤
12. āi,j:ā. ((i ā¤ j)
ā ((k i) ā¤ (k j)))
13. ān:ā. ((k0 n) ā¤ (k n))
14. ān:ā. (n ā¤ (k n))
15. ān:ā. (0 ā¤ (k n))
ā¢ āf:ā ā¶ š¹. is-path(t;f)
Latex:
Latex:
1. Fan
2. t : (\mBbbB{} List) {}\mrightarrow{} \mBbbP{}
3. \mforall{}as:\mBbbB{} List. Dec(t as)
4. \mforall{}as,bs:\mBbbB{} List. (as \mleq{} bs {}\mRightarrow{} (t bs) {}\mRightarrow{} (t as))
5. eff-unique(t)
6. \mforall{}n:\mBbbN{}
\mexists{}k:\mBbbN{}
((n \mleq{} k)
\mwedge{} (\mforall{}b,c:\mBbbB{} List.
((||b|| = k) {}\mRightarrow{} (||c|| = k) {}\mRightarrow{} (t b) {}\mRightarrow{} (t c) {}\mRightarrow{} (firstn(n;b) = firstn(n;c)))))
7. a : n:\mBbbN{} {}\mrightarrow{} (\mBbbB{} List)
8. \mforall{}n:\mBbbN{}. ((||a n|| = n) \mwedge{} (t (a n)))
9. k0 : n:\mBbbN{} {}\mrightarrow{} \mBbbN{}
10. \mforall{}n:\mBbbN{}
((n \mleq{} (k0 n))
\mwedge{} (\mforall{}b,c:\mBbbB{} List.
((||b|| = (k0 n)) {}\mRightarrow{} (||c|| = (k0 n)) {}\mRightarrow{} (t b) {}\mRightarrow{} (t c) {}\mRightarrow{} (firstn(n;b) = firstn(n;c)))))
11. k : \mBbbN{} {}\mrightarrow{} \mBbbZ{}
12. \mforall{}i,j:\mBbbN{}. ((i \mleq{} j) {}\mRightarrow{} ((k i) \mleq{} (k j)))
13. \mforall{}n:\mBbbN{}. ((k0 n) \mleq{} (k n))
\mvdash{} \mexists{}f:\mBbbN{} {}\mrightarrow{} \mBbbB{}. is-path(t;f)
By
Latex:
((Assert \mforall{}n:\mBbbN{}. (n \mleq{} (k n)) BY
(ParallelLast THEN Auto' THEN InstHyp [\mkleeneopen{}n\mkleeneclose{}] (-6)\mcdot{} THEN Auto'))
THEN (Assert \mforall{}n:\mBbbN{}. (0 \mleq{} (k n)) BY
(ParallelLast THEN Auto'))
)
Home
Index