Nuprl Lemma : predicate-or-shift_wf
∀[T:Type]. ∀[A:n:ℕ ⟶ (ℕn ⟶ T) ⟶ ℙ]. ∀[x:T].  (A[x] ∈ n:ℕ ⟶ (ℕn ⟶ T) ⟶ ℙ)
Proof
Definitions occuring in Statement : 
predicate-or-shift: A[x]
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
predicate-or-shift: A[x]
, 
prop: ℙ
, 
nat: ℕ
Lemmas referenced : 
or_wf, 
predicate-shift_wf, 
int_seg_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lambdaEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
applyEquality, 
hypothesisEquality, 
universeEquality, 
hypothesis, 
functionEquality, 
natural_numberEquality, 
setElimination, 
rename, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache, 
cumulativity
Latex:
\mforall{}[T:Type].  \mforall{}[A:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  T)  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[x:T].    (A[x]  \mmember{}  n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  T)  {}\mrightarrow{}  \mBbbP{})
Date html generated:
2016_05_14-PM-04_07_15
Last ObjectModification:
2015_12_26-PM-07_55_09
Theory : fan-theorem
Home
Index