Nuprl Lemma : predicate-shift_wf

[T:Type]. ∀[X:𝕌']. ∀[A:n:ℕ ⟶ (ℕn ⟶ T) ⟶ X]. ∀[x:T].  (A_x ∈ n:ℕ ⟶ (ℕn ⟶ T) ⟶ X)


Proof




Definitions occuring in Statement :  predicate-shift: A_x int_seg: {i..j-} nat: uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T predicate-shift: A_x nat: ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top and: P ∧ Q prop: le: A ≤ B less_than': less_than'(a;b) subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  nat_wf int_seg_subtype int_seg_wf subtype_rel_dep_function seq-single_wf false_wf seq-append_wf le_wf int_formula_prop_wf int_term_value_var_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermAdd_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le nat_properties
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lambdaEquality applyEquality hypothesisEquality dependent_set_memberEquality addEquality sqequalHypSubstitution setElimination thin rename natural_numberEquality lemma_by_obid isectElimination hypothesis dependent_functionElimination unionElimination independent_isectElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll cumulativity lambdaFormation because_Cache functionEquality axiomEquality equalityTransitivity equalitySymmetry universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[X:\mBbbU{}'].  \mforall{}[A:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  T)  {}\mrightarrow{}  X].  \mforall{}[x:T].    (A\_x  \mmember{}  n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  T)  {}\mrightarrow{}  X)



Date html generated: 2016_05_14-PM-04_07_10
Last ObjectModification: 2016_01_14-PM-10_58_11

Theory : fan-theorem


Home Index