Nuprl Lemma : unbounded-list-predicate_wf

[T:Type]. ∀[A:(T List) ⟶ ℙ].  (Unbounded(A) ∈ ℙ)


Proof




Definitions occuring in Statement :  unbounded-list-predicate: Unbounded(A) list: List uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T unbounded-list-predicate: Unbounded(A) so_lambda: λ2x.t[x] nat: so_apply: x[s] prop:
Lemmas referenced :  all_wf nat_wf exists_wf list_wf and_wf equal_wf length_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis lambdaEquality hypothesisEquality intEquality setElimination rename applyEquality axiomEquality equalityTransitivity equalitySymmetry functionEquality cumulativity universeEquality isect_memberEquality because_Cache

Latex:
\mforall{}[T:Type].  \mforall{}[A:(T  List)  {}\mrightarrow{}  \mBbbP{}].    (Unbounded(A)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_14-PM-04_10_22
Last ObjectModification: 2015_12_26-PM-07_54_17

Theory : fan-theorem


Home Index