Step
*
of Lemma
assert-fset-contains-none
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[s:fset(T)]. ∀[Cs:T ⟶ fset(fset(T))].
uiff(↑fset-contains-none(eq;s;x.Cs[x]);∀x:T. (x ∈ s
⇒ (∀c:fset(T). (c ∈ Cs[x]
⇒ (¬c ⊆ s)))))
BY
{ ((UnivCD THENA Auto) THEN Unfold `fset-contains-none` 0 THEN (RWO "assert-fset-contains-none-of" 0 THENA Auto)) }
1
1. T : Type
2. eq : EqDecider(T)
3. s : fset(T)
4. Cs : T ⟶ fset(fset(T))
⊢ uiff(∀c:fset(T). (c ∈ f-union(eq;deq-fset(eq);s;x.Cs[x])
⇒ (¬c ⊆ s));∀x:T
(x ∈ s
⇒ (∀c:fset(T). (c ∈ Cs[x]
⇒ (¬c ⊆ s)))))
Latex:
Latex:
\mforall{}[T:Type]. \mforall{}[eq:EqDecider(T)]. \mforall{}[s:fset(T)]. \mforall{}[Cs:T {}\mrightarrow{} fset(fset(T))].
uiff(\muparrow{}fset-contains-none(eq;s;x.Cs[x]);\mforall{}x:T. (x \mmember{} s {}\mRightarrow{} (\mforall{}c:fset(T). (c \mmember{} Cs[x] {}\mRightarrow{} (\mneg{}c \msubseteq{} s)))))
By
Latex:
((UnivCD THENA Auto)
THEN Unfold `fset-contains-none` 0
THEN (RWO "assert-fset-contains-none-of" 0 THENA Auto))
Home
Index