Step
*
of Lemma
decidable__squash_exists_fset
∀[T:Type]. ∀[P:T ⟶ ℙ]. ∀eq:EqDecider(T). ∀s:fset(T). ((∀x:T. Dec(P[x]))
⇒ Dec(↓∃x:T. (x ∈ s ∧ P[x])))
BY
{ (Auto
THEN RenameVar `d' (-1)
THEN (Assert ∀x:T. (isl(d x) ∈ 𝔹) BY
((D 0 THENA Auto) THEN Try ((GenConclTerm ⌜d x⌝⋅ THEN Auto)) THEN Auto))
THEN (Assert ∀x:T. (↑isl(d x)
⇐⇒ P[x]) BY
((D 0 THENA Auto) THEN GenConclTerm ⌜d x⌝⋅ THEN Auto THEN D -3 THEN Reduce 0 THEN Auto))
THEN (Assert ⌜Dec(¬↑fset-null({x ∈ s | isl(d x)}))⌝⋅ THENA Auto)
THEN RepeatFor 2 (ParallelLast)) }
1
1. [T] : Type
2. [P] : T ⟶ ℙ
3. eq : EqDecider(T)
4. s : fset(T)
5. d : ∀x:T. Dec(P[x])
6. ∀x:T. (isl(d x) ∈ 𝔹)
7. ∀x:T. (↑isl(d x)
⇐⇒ P[x])
8. ¬↑fset-null({x ∈ s | isl(d x)})
⊢ ↓∃x:T. (x ∈ s ∧ P[x])
2
1. [T] : Type
2. [P] : T ⟶ ℙ
3. eq : EqDecider(T)
4. s : fset(T)
5. d : ∀x:T. Dec(P[x])
6. ∀x:T. (isl(d x) ∈ 𝔹)
7. ∀x:T. (↑isl(d x)
⇐⇒ P[x])
8. ¬¬↑fset-null({x ∈ s | isl(d x)})
⊢ ¬↓∃x:T. (x ∈ s ∧ P[x])
Latex:
Latex:
\mforall{}[T:Type]. \mforall{}[P:T {}\mrightarrow{} \mBbbP{}].
\mforall{}eq:EqDecider(T). \mforall{}s:fset(T). ((\mforall{}x:T. Dec(P[x])) {}\mRightarrow{} Dec(\mdownarrow{}\mexists{}x:T. (x \mmember{} s \mwedge{} P[x])))
By
Latex:
(Auto
THEN RenameVar `d' (-1)
THEN (Assert \mforall{}x:T. (isl(d x) \mmember{} \mBbbB{}) BY
((D 0 THENA Auto) THEN Try ((GenConclTerm \mkleeneopen{}d x\mkleeneclose{}\mcdot{} THEN Auto)) THEN Auto))
THEN (Assert \mforall{}x:T. (\muparrow{}isl(d x) \mLeftarrow{}{}\mRightarrow{} P[x]) BY
((D 0 THENA Auto)
THEN GenConclTerm \mkleeneopen{}d x\mkleeneclose{}\mcdot{}
THEN Auto
THEN D -3
THEN Reduce 0
THEN Auto))
THEN (Assert \mkleeneopen{}Dec(\mneg{}\muparrow{}fset-null(\{x \mmember{} s | isl(d x)\}))\mkleeneclose{}\mcdot{} THENA Auto)
THEN RepeatFor 2 (ParallelLast))
Home
Index