Step
*
2
of Lemma
fset-ac-le-distributive-constrained
1. T : Type
2. eq : EqDecider(T)
3. P : fset(T) ⟶ 𝔹
4. ∀x,y:fset(T). (y ⊆ x
⇒ (↑(P x))
⇒ (↑(P y)))
5. a : {ac:fset(fset(T))| (↑fset-antichain(eq;ac)) ∧ fset-all(ac;a.P[a])}
6. b : {ac:fset(fset(T))| (↑fset-antichain(eq;ac)) ∧ fset-all(ac;a.P[a])}
7. c : {ac:fset(fset(T))| (↑fset-antichain(eq;ac)) ∧ fset-all(ac;a.P[a])}
⊢ ↑fset-antichain(eq;glb(P;a;lub(P;b;c)))
BY
{ (GenConclAtAddr [1;2] THEN Auto) }
Latex:
Latex:
1. T : Type
2. eq : EqDecider(T)
3. P : fset(T) {}\mrightarrow{} \mBbbB{}
4. \mforall{}x,y:fset(T). (y \msubseteq{} x {}\mRightarrow{} (\muparrow{}(P x)) {}\mRightarrow{} (\muparrow{}(P y)))
5. a : \{ac:fset(fset(T))| (\muparrow{}fset-antichain(eq;ac)) \mwedge{} fset-all(ac;a.P[a])\}
6. b : \{ac:fset(fset(T))| (\muparrow{}fset-antichain(eq;ac)) \mwedge{} fset-all(ac;a.P[a])\}
7. c : \{ac:fset(fset(T))| (\muparrow{}fset-antichain(eq;ac)) \mwedge{} fset-all(ac;a.P[a])\}
\mvdash{} \muparrow{}fset-antichain(eq;glb(P;a;lub(P;b;c)))
By
Latex:
(GenConclAtAddr [1;2] THEN Auto)
Home
Index