Step
*
1
of Lemma
fset-ac-order-constrained
1. T : Type
2. eq : EqDecider(T)
3. P : fset(T) ⟶ 𝔹
4. Trans({ac:fset(fset(T))| (↑fset-antichain(eq;ac)) ∧ fset-all(ac;a.P[a])} ;ac1,ac2.fset-ac-le(eq;ac1;ac2))
5. ac1 : fset(fset(T))
6. ↑fset-antichain(eq;ac1)
7. fset-all(ac1;a.P[a])
8. ac2 : fset(fset(T))
9. ↑fset-antichain(eq;ac2)
10. fset-all(ac2;a.P[a])
11. fset-ac-le(eq;ac1;ac2)
12. fset-ac-le(eq;ac2;ac1)
⊢ ac1 = ac2 ∈ fset(fset(T))
BY
{ ((Using [`eq',⌜deq-fset(eq)⌝] (BLemma `fset-extensionality`)⋅ THEN Auto)
THEN ∀h:hyp. ((FLemma `fset-ac-le-implies` [h] THENA Auto) THEN (FHyp (-1) [-2] THENA Auto))
) }
1
1. T : Type
2. eq : EqDecider(T)
3. P : fset(T) ⟶ 𝔹
4. Trans({ac:fset(fset(T))| (↑fset-antichain(eq;ac)) ∧ fset-all(ac;a.P[a])} ;ac1,ac2.fset-ac-le(eq;ac1;ac2))
5. ac1 : fset(fset(T))
6. ↑fset-antichain(eq;ac1)
7. fset-all(ac1;a.P[a])
8. ac2 : fset(fset(T))
9. ↑fset-antichain(eq;ac2)
10. fset-all(ac2;a.P[a])
11. fset-ac-le(eq;ac1;ac2)
12. fset-ac-le(eq;ac2;ac1)
13. a : fset(T)
14. a ∈ ac1
15. ∀a:fset(T). (a ∈ ac1
⇒ (¬({y ∈ ac2 | deq-f-subset(eq) y a} = {} ∈ fset(fset(T)))))
16. ¬({y ∈ ac2 | deq-f-subset(eq) y a} = {} ∈ fset(fset(T)))
⊢ a ∈ ac2
2
1. T : Type
2. eq : EqDecider(T)
3. P : fset(T) ⟶ 𝔹
4. Trans({ac:fset(fset(T))| (↑fset-antichain(eq;ac)) ∧ fset-all(ac;a.P[a])} ;ac1,ac2.fset-ac-le(eq;ac1;ac2))
5. ac1 : fset(fset(T))
6. ↑fset-antichain(eq;ac1)
7. fset-all(ac1;a.P[a])
8. ac2 : fset(fset(T))
9. ↑fset-antichain(eq;ac2)
10. fset-all(ac2;a.P[a])
11. fset-ac-le(eq;ac1;ac2)
12. fset-ac-le(eq;ac2;ac1)
13. a : fset(T)
14. a ∈ ac2
15. ∀a:fset(T). (a ∈ ac2
⇒ (¬({y ∈ ac1 | deq-f-subset(eq) y a} = {} ∈ fset(fset(T)))))
16. ¬({y ∈ ac1 | deq-f-subset(eq) y a} = {} ∈ fset(fset(T)))
⊢ a ∈ ac1
Latex:
Latex:
1. T : Type
2. eq : EqDecider(T)
3. P : fset(T) {}\mrightarrow{} \mBbbB{}
4. Trans(\{ac:fset(fset(T))| (\muparrow{}fset-antichain(eq;ac)) \mwedge{} fset-all(ac;a.P[a])\} ;ac1,ac2.fset-ac-le(eq;a\000Cc1;ac2))
5. ac1 : fset(fset(T))
6. \muparrow{}fset-antichain(eq;ac1)
7. fset-all(ac1;a.P[a])
8. ac2 : fset(fset(T))
9. \muparrow{}fset-antichain(eq;ac2)
10. fset-all(ac2;a.P[a])
11. fset-ac-le(eq;ac1;ac2)
12. fset-ac-le(eq;ac2;ac1)
\mvdash{} ac1 = ac2
By
Latex:
((Using [`eq',\mkleeneopen{}deq-fset(eq)\mkleeneclose{}] (BLemma `fset-extensionality`)\mcdot{} THEN Auto)
THEN \mforall{}h:hyp. ((FLemma `fset-ac-le-implies` [h] THENA Auto) THEN (FHyp (-1) [-2] THENA Auto))
)
Home
Index