Nuprl Lemma : cWO-induction

[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].  ∀[Q:T ⟶ ℙ]. TI(T;x,y.R[x;y];t.Q[t]) supposing cWO(T;x,y.R[x;y])


Proof




Definitions occuring in Statement :  cWO: cWO(T;x,y.R[x; y]) TI: TI(T;x,y.R[x; y];t.Q[t]) uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s1;s2] so_apply: x[s] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  member: t ∈ T
Lemmas referenced :  cWO-induction-extract-sqequal cWO-induction_1-ext
Rules used in proof :  introduction sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity sqequalRule cut extract_by_obid hypothesis instantiate

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    \mforall{}[Q:T  {}\mrightarrow{}  \mBbbP{}].  TI(T;x,y.R[x;y];t.Q[t])  supposing  cWO(T;x,y.R[x;y])



Date html generated: 2018_05_21-PM-00_04_11
Last ObjectModification: 2018_05_19-AM-07_10_28

Theory : fun_1


Home Index