Nuprl Lemma : cWO-induction
∀[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].  ∀[Q:T ⟶ ℙ]. TI(T;x,y.R[x;y];t.Q[t]) supposing cWO(T;x,y.R[x;y])
Proof
Definitions occuring in Statement : 
cWO: cWO(T;x,y.R[x; y])
, 
TI: TI(T;x,y.R[x; y];t.Q[t])
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
so_apply: x[s]
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
member: t ∈ T
Lemmas referenced : 
cWO-induction-extract-sqequal, 
cWO-induction_1-ext
Rules used in proof : 
introduction, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
sqequalRule, 
cut, 
extract_by_obid, 
hypothesis, 
instantiate
Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    \mforall{}[Q:T  {}\mrightarrow{}  \mBbbP{}].  TI(T;x,y.R[x;y];t.Q[t])  supposing  cWO(T;x,y.R[x;y])
Date html generated:
2018_05_21-PM-00_04_11
Last ObjectModification:
2018_05_19-AM-07_10_28
Theory : fun_1
Home
Index