Nuprl Lemma : cbv-all-identity

[T:Type]. ∀[t:T].  let x ⟵ in x ∈ supposing valueall-type(T)


Proof




Definitions occuring in Statement :  valueall-type: valueall-type(T) callbyvalueall: callbyvalueall uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a callbyvalueall: callbyvalueall has-value: (a)↓ has-valueall: has-valueall(a)
Lemmas referenced :  valueall-type-has-valueall evalall-reduce valueall-type_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination hypothesis callbyvalueReduce axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[t:T].    let  x  \mleftarrow{}{}  t  in  x  \mmember{}  T  supposing  valueall-type(T)



Date html generated: 2016_05_13-PM-04_07_53
Last ObjectModification: 2015_12_26-AM-11_03_41

Theory : fun_1


Home Index