Nuprl Lemma : cbv-all-identity
∀[T:Type]. ∀[t:T].  let x ⟵ t in x ∈ T supposing valueall-type(T)
Proof
Definitions occuring in Statement : 
valueall-type: valueall-type(T)
, 
callbyvalueall: callbyvalueall, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
callbyvalueall: callbyvalueall, 
has-value: (a)↓
, 
has-valueall: has-valueall(a)
Lemmas referenced : 
valueall-type-has-valueall, 
evalall-reduce, 
valueall-type_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_isectElimination, 
hypothesis, 
callbyvalueReduce, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[t:T].    let  x  \mleftarrow{}{}  t  in  x  \mmember{}  T  supposing  valueall-type(T)
Date html generated:
2016_05_13-PM-04_07_53
Last ObjectModification:
2015_12_26-AM-11_03_41
Theory : fun_1
Home
Index