Nuprl Lemma : cbva-intro-test

[T:Type]. ∀x:T. supposing valueall-type(T)


Proof




Definitions occuring in Statement :  valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a all: x:A. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] sq_stable: SqStable(P) implies:  Q squash: T
Lemmas referenced :  evalall-reduce set-value-type equal_wf valueall-type-value-type istype-universe valueall-type_wf sq_stable__valueall-type
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  Error :lambdaFormation_alt,  cut hypothesisEquality sqequalRule introduction extract_by_obid sqequalHypSubstitution isectElimination thin independent_isectElimination hypothesis cutEval Error :dependent_set_memberEquality_alt,  equalityTransitivity equalitySymmetry Error :equalityIsType1,  Error :inhabitedIsType,  Error :lambdaEquality_alt,  Error :universeIsType,  setElimination rename hyp_replacement applyLambdaEquality universeEquality independent_functionElimination imageMemberEquality baseClosed imageElimination

Latex:
\mforall{}[T:Type].  \mforall{}x:T.  T  supposing  valueall-type(T)



Date html generated: 2019_06_20-PM-00_26_54
Last ObjectModification: 2018_10_09-AM-09_14_06

Theory : fun_1


Home Index