Nuprl Lemma : cbva-intro-test3
∀x:ℤ. {y:ℤ| x * x < y} 
Proof
Definitions occuring in Statement : 
less_than: a < b
, 
all: ∀x:A. B[x]
, 
set: {x:A| B[x]} 
, 
multiply: n * m
, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
sq_type: SQType(T)
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
not: ¬A
, 
rev_implies: P 
⇐ Q
, 
false: False
, 
uiff: uiff(P;Q)
, 
subtract: n - m
, 
subtype_rel: A ⊆r B
, 
top: Top
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
true: True
, 
prop: ℙ
Lemmas referenced : 
int-valueall-type, 
evalall-reduce, 
set-value-type, 
equal_wf, 
valueall-type-value-type, 
subtype_base_sq, 
int_subtype_base, 
decidable__lt, 
istype-false, 
not-lt-2, 
condition-implies-le, 
minus-add, 
istype-void, 
istype-int, 
minus-one-mul, 
add-swap, 
minus-one-mul-top, 
add-commutes, 
add-mul-special, 
zero-mul, 
add-zero, 
add-associates, 
le-add-cancel, 
less_than_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
hypothesis, 
intEquality, 
sqequalRule, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
equalityTransitivity, 
equalitySymmetry, 
hypothesisEquality, 
independent_isectElimination, 
cutEval, 
Error :dependent_set_memberEquality_alt, 
Error :equalityIsType1, 
Error :inhabitedIsType, 
Error :lambdaEquality_alt, 
Error :universeIsType, 
setElimination, 
rename, 
because_Cache, 
instantiate, 
cumulativity, 
dependent_functionElimination, 
independent_functionElimination, 
Error :dependent_set_memberFormation_alt, 
addEquality, 
multiplyEquality, 
natural_numberEquality, 
unionElimination, 
independent_pairFormation, 
voidElimination, 
productElimination, 
applyEquality, 
Error :isect_memberEquality_alt, 
minusEquality
Latex:
\mforall{}x:\mBbbZ{}.  \{y:\mBbbZ{}|  x  *  x  <  y\} 
Date html generated:
2019_06_20-PM-01_05_06
Last ObjectModification:
2019_06_20-PM-00_59_52
Theory : fun_1
Home
Index