Nuprl Lemma : cbva-intro-test3

x:ℤ{y:ℤx < y} 


Proof




Definitions occuring in Statement :  less_than: a < b all: x:A. B[x] set: {x:A| B[x]}  multiply: m int:
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) implies:  Q guard: {T} decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q and: P ∧ Q not: ¬A rev_implies:  Q false: False uiff: uiff(P;Q) subtract: m subtype_rel: A ⊆B top: Top le: A ≤ B less_than': less_than'(a;b) true: True prop:
Lemmas referenced :  int-valueall-type evalall-reduce set-value-type equal_wf valueall-type-value-type subtype_base_sq int_subtype_base decidable__lt istype-false not-lt-2 condition-implies-le minus-add istype-void istype-int minus-one-mul add-swap minus-one-mul-top add-commutes add-mul-special zero-mul add-zero add-associates le-add-cancel less_than_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  cut introduction extract_by_obid hypothesis intEquality sqequalRule sqequalHypSubstitution isectElimination thin equalityTransitivity equalitySymmetry hypothesisEquality independent_isectElimination cutEval Error :dependent_set_memberEquality_alt,  Error :equalityIsType1,  Error :inhabitedIsType,  Error :lambdaEquality_alt,  Error :universeIsType,  setElimination rename because_Cache instantiate cumulativity dependent_functionElimination independent_functionElimination Error :dependent_set_memberFormation_alt,  addEquality multiplyEquality natural_numberEquality unionElimination independent_pairFormation voidElimination productElimination applyEquality Error :isect_memberEquality_alt,  minusEquality

Latex:
\mforall{}x:\mBbbZ{}.  \{y:\mBbbZ{}|  x  *  x  <  y\} 



Date html generated: 2019_06_20-PM-01_05_06
Last ObjectModification: 2019_06_20-PM-00_59_52

Theory : fun_1


Home Index