Nuprl Lemma : dep_ax_choice

[A:Type]. ∀[B:A ⟶ Type]. ∀[Q:x:A ⟶ B[x] ⟶ Type].  ((∀x:A. ∃y:B[x]. Q[x;y])  (∃f:x:A ⟶ B[x]. ∀x:A. Q[x;f x]))


Proof




Definitions occuring in Statement :  uall: [x:A]. B[x] so_apply: x[s1;s2] so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] implies:  Q apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q member: t ∈ T prop: so_lambda: λ2x.t[x] so_apply: x[s] so_apply: x[s1;s2] subtype_rel: A ⊆B exists: x:A. B[x] all: x:A. B[x] pi1: fst(t)
Lemmas referenced :  all_wf exists_wf subtype_rel_self pi1_wf equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule lambdaEquality applyEquality hypothesis instantiate universeEquality Error :functionIsType,  Error :universeIsType,  Error :inhabitedIsType,  rename dependent_pairFormation productEquality equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination productElimination hyp_replacement applyLambdaEquality

Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[Q:x:A  {}\mrightarrow{}  B[x]  {}\mrightarrow{}  Type].
    ((\mforall{}x:A.  \mexists{}y:B[x].  Q[x;y])  {}\mRightarrow{}  (\mexists{}f:x:A  {}\mrightarrow{}  B[x].  \mforall{}x:A.  Q[x;f  x]))



Date html generated: 2019_06_20-PM-00_26_29
Last ObjectModification: 2018_09_26-PM-00_07_55

Theory : fun_1


Home Index