Nuprl Lemma : evalall-evalall
∀[t:Top]. (evalall(evalall(t)) ~ evalall(t))
Proof
Definitions occuring in Statement : 
evalall: evalall(t)
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
evalall: evalall(t)
, 
is-exception: is-exception(t)
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
Lemmas referenced : 
exception-not-bottom, 
bottom_diverge, 
top_wf, 
is-exception_wf, 
has-value_wf_base, 
evalall-sqequal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
thin, 
sqequalSqle, 
divergentSqle, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
baseApply, 
closedConclusion, 
baseClosed, 
hypothesisEquality, 
independent_isectElimination, 
hypothesis, 
sqleReflexivity, 
because_Cache, 
exceptionSqequal, 
axiomSqleEquality, 
sqequalAxiom, 
sqleTransitivity, 
sqleRule, 
independent_functionElimination, 
voidElimination, 
callbyvalueExceptionCases
Latex:
\mforall{}[t:Top].  (evalall(evalall(t))  \msim{}  evalall(t))
Date html generated:
2016_05_13-PM-04_07_44
Last ObjectModification:
2016_01_14-PM-07_46_03
Theory : fun_1
Home
Index