Nuprl Lemma : evalall-evalall

[t:Top]. (evalall(evalall(t)) evalall(t))


Proof




Definitions occuring in Statement :  evalall: evalall(t) uall: [x:A]. B[x] top: Top sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a evalall: evalall(t) is-exception: is-exception(t) not: ¬A implies:  Q false: False
Lemmas referenced :  exception-not-bottom bottom_diverge top_wf is-exception_wf has-value_wf_base evalall-sqequal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule thin sqequalSqle divergentSqle lemma_by_obid sqequalHypSubstitution isectElimination baseApply closedConclusion baseClosed hypothesisEquality independent_isectElimination hypothesis sqleReflexivity because_Cache exceptionSqequal axiomSqleEquality sqequalAxiom sqleTransitivity sqleRule independent_functionElimination voidElimination callbyvalueExceptionCases

Latex:
\mforall{}[t:Top].  (evalall(evalall(t))  \msim{}  evalall(t))



Date html generated: 2016_05_13-PM-04_07_44
Last ObjectModification: 2016_01_14-PM-07_46_03

Theory : fun_1


Home Index