Nuprl Lemma : evalall-sqle
∀[x:Base]. evalall(x) ≤ x supposing (evalall(x))↓
Proof
Definitions occuring in Statement : 
has-value: (a)↓
, 
evalall: evalall(t)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
base: Base
, 
sqle: s ≤ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
prop: ℙ
Lemmas referenced : 
base_wf, 
is-exception_wf, 
has-value_wf_base, 
evalall-sqequal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_isectElimination, 
hypothesis, 
divergentSqle, 
sqleReflexivity, 
axiomSqleEquality, 
baseApply, 
closedConclusion, 
baseClosed, 
isect_memberEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[x:Base].  evalall(x)  \mleq{}  x  supposing  (evalall(x))\mdownarrow{}
Date html generated:
2016_05_13-PM-04_07_36
Last ObjectModification:
2016_01_14-PM-07_46_01
Theory : fun_1
Home
Index