Nuprl Lemma : evalall-sqle

[x:Base]. evalall(x) ≤ supposing (evalall(x))↓


Proof




Definitions occuring in Statement :  has-value: (a)↓ evalall: evalall(t) uimplies: supposing a uall: [x:A]. B[x] base: Base sqle: s ≤ t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a prop:
Lemmas referenced :  base_wf is-exception_wf has-value_wf_base evalall-sqequal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination hypothesis divergentSqle sqleReflexivity axiomSqleEquality baseApply closedConclusion baseClosed isect_memberEquality because_Cache equalityTransitivity equalitySymmetry

Latex:
\mforall{}[x:Base].  evalall(x)  \mleq{}  x  supposing  (evalall(x))\mdownarrow{}



Date html generated: 2016_05_13-PM-04_07_36
Last ObjectModification: 2016_01_14-PM-07_46_01

Theory : fun_1


Home Index