Nuprl Lemma : test-cbv-normalize

[a,B:Top].  (eval in <let y ⟵ in B[y], eval in B[z] 22, eval in B[w] 1> eval in <l\000Cet y ⟵ in B[y], B[x] 22, (B[x] 3) 1>)


Proof




Definitions occuring in Statement :  callbyvalueall: callbyvalueall callbyvalue: callbyvalue uall: [x:A]. B[x] top: Top so_apply: x[s] pair: <a, b> add: m natural_number: $n sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a implies:  Q has-value: (a)↓ prop:
Lemmas referenced :  top_wf has-value_wf_base cbv_sqequal
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity cut lemma_by_obid sqequalHypSubstitution sqequalTransitivity computationStep isectElimination thin baseApply closedConclusion baseClosed hypothesisEquality independent_isectElimination lambdaFormation callbyvalueReduce hypothesis isect_memberFormation introduction sqequalAxiom isect_memberEquality because_Cache

Latex:
\mforall{}[a,B:Top].
    (eval  x  =  a  in
      <let  y  \mleftarrow{}{}  x  in  B[y],  eval  z  =  a  in  B[z]  +  22,  eval  w  =  a  in  B[w]  +  3  +  1>  \msim{}  eval  x  =  a  in
                                                                <let  y  \mleftarrow{}{}  x  in  B[y],  B[x]  +  22,  (B[x]  +  3)  +  1>)



Date html generated: 2016_05_13-PM-04_08_02
Last ObjectModification: 2016_01_14-PM-07_45_46

Theory : fun_1


Home Index