Nuprl Lemma : test-cbva-normalize

[a,B:Top].  (let x ⟵ in <let y ⟵ in B[y], let z ⟵ in B[z] 22, eval in B[w] 1> let x ⟵ in <B\000C[x], B[x] 22, (B[x] 3) 1>)


Proof




Definitions occuring in Statement :  callbyvalueall: callbyvalueall callbyvalue: callbyvalue uall: [x:A]. B[x] top: Top so_apply: x[s] pair: <a, b> add: m natural_number: $n sqequal: t
Definitions unfolded in proof :  callbyvalueall: callbyvalueall uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a has-valueall: has-valueall(a) implies:  Q has-value: (a)↓ prop:
Lemmas referenced :  top_wf has-valueall_wf_base has-valueall-has-value evalall-sqequal cbv_sqequal
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity cut sqequalTransitivity computationStep lemma_by_obid sqequalHypSubstitution isectElimination thin baseApply closedConclusion baseClosed hypothesisEquality independent_isectElimination lambdaFormation hypothesis callbyvalueReduce because_Cache isect_memberFormation introduction sqequalAxiom isect_memberEquality

Latex:
\mforall{}[a,B:Top].    (let  x  \mleftarrow{}{}  a  in  <let  y  \mleftarrow{}{}  x  in  B[y],  let  z  \mleftarrow{}{}  a  in  B[z]  +  22,  eval  w  =  a  in  B[w]  +  3  +  1\000C>  \msim{}  let  x  \mleftarrow{}{}  a  in  <B[x],  B[x]  +  22,  (B[x]  +  3)  +  1>)



Date html generated: 2016_05_13-PM-04_08_00
Last ObjectModification: 2016_01_14-PM-07_45_54

Theory : fun_1


Home Index