Nuprl Lemma : assert-is_int

[T:Type]. ∀[x:T]. uiff(↑is_int(x);x ∈ ℤsupposing value-type(T) ∧ (T ⊆Base)


Proof




Definitions occuring in Statement :  is_int: is_int(x) value-type: value-type(T) assert: b uiff: uiff(P;Q) uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] and: P ∧ Q member: t ∈ T int: base: Base universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a and: P ∧ Q uiff: uiff(P;Q) is_int: is_int(x) has-value: (a)↓ assert: b ifthenelse: if then else fi  btrue: tt top: Top bfalse: ff false: False cand: c∧ B true: True implies:  Q subtype_rel: A ⊆B sq_type: SQType(T) all: x:A. B[x] guard: {T}
Lemmas referenced :  value-type-has-value has-value_wf_base is-exception_wf istype-top istype-void istype-assert is_int_wf int-value-type assert_witness istype-int value-type_wf subtype_rel_wf base_wf istype-universe subtype_base_sq int_subtype_base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalHypSubstitution productElimination thin independent_pairFormation sqequalRule callbyvalueReduce extract_by_obid isectElimination hypothesisEquality independent_isectElimination hypothesis isintCases divergentSqle baseClosed because_Cache isintReduceTrue equalityTransitivity equalitySymmetry axiomSqEquality Error :inhabitedIsType,  Error :isect_memberEquality_alt,  Error :isectIsTypeImplies,  voidElimination axiomEquality intEquality natural_numberEquality independent_functionElimination Error :equalityIstype,  applyEquality sqequalBase independent_pairEquality Error :universeIsType,  Error :productIsType,  instantiate universeEquality cumulativity dependent_functionElimination

Latex:
\mforall{}[T:Type].  \mforall{}[x:T].  uiff(\muparrow{}is\_int(x);x  \mmember{}  \mBbbZ{})  supposing  value-type(T)  \mwedge{}  (T  \msubseteq{}r  Base)



Date html generated: 2019_06_20-AM-11_33_09
Last ObjectModification: 2019_02_07-PM-00_00_13

Theory : int_1


Home Index