Nuprl Lemma : better-gcd-properties

a,b:ℤ.
  ((∃c:ℤ((c better-gcd(a;b)) a ∈ ℤ))
  ∧ (∃d:ℤ((d better-gcd(a;b)) b ∈ ℤ))
  ∧ (∃s,t:ℤ(better-gcd(a;b) ((s a) (t b)) ∈ ℤ)))


Proof




Definitions occuring in Statement :  better-gcd: better-gcd(a;b) all: x:A. B[x] exists: x:A. B[x] and: P ∧ Q multiply: m add: m int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  gcd-properties better-gcd-gcd
Rules used in proof :  cut lemma_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality sqequalRule isectElimination because_Cache intEquality

Latex:
\mforall{}a,b:\mBbbZ{}.
    ((\mexists{}c:\mBbbZ{}.  ((c  *  better-gcd(a;b))  =  a))
    \mwedge{}  (\mexists{}d:\mBbbZ{}.  ((d  *  better-gcd(a;b))  =  b))
    \mwedge{}  (\mexists{}s,t:\mBbbZ{}.  (better-gcd(a;b)  =  ((s  *  a)  +  (t  *  b)))))



Date html generated: 2016_05_13-PM-04_04_16
Last ObjectModification: 2015_12_26-AM-10_55_36

Theory : int_1


Home Index