Nuprl Lemma : gcd-properties
∀a,b:ℤ.
  ((∃c:ℤ. ((c * gcd(a;b)) = a ∈ ℤ)) ∧ (∃d:ℤ. ((d * gcd(a;b)) = b ∈ ℤ)) ∧ (∃s,t:ℤ. (gcd(a;b) = ((s * a) + (t * b)) ∈ ℤ)))
Proof
Definitions occuring in Statement : 
gcd: gcd(a;b), 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
and: P ∧ Q, 
multiply: n * m, 
add: n + m, 
int: ℤ, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
int_seg: {i..j-}, 
false: False, 
lelt: i ≤ j < k, 
and: P ∧ Q, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
guard: {T}, 
uimplies: b supposing a, 
implies: P ⇒ Q, 
decidable: Dec(P), 
or: P ∨ Q, 
subtype_rel: A ⊆r B, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
less_than: a < b, 
squash: ↓T, 
cand: A c∧ B, 
iff: P ⇐⇒ Q, 
not: ¬A, 
rev_implies: P ⇐ Q, 
uiff: uiff(P;Q), 
subtract: n - m, 
le: A ≤ B, 
less_than': less_than'(a;b), 
true: True, 
sq_type: SQType(T), 
nat: ℕ, 
prop: ℙ, 
exists: ∃x:A. B[x], 
sq_stable: SqStable(P), 
gcd: gcd(a;b), 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
bnot: ¬bb, 
assert: ↑b, 
int_nzero: ℤ-o, 
nequal: a ≠ b ∈ T , 
ge: i ≥ j , 
nat_plus: ℕ+
Lemmas referenced : 
less_than_transitivity1, 
less_than_irreflexivity, 
int_seg_wf, 
decidable__int_equal, 
subtract_wf, 
subtype_base_sq, 
set_subtype_base, 
int_subtype_base, 
decidable__le, 
istype-false, 
not-le-2, 
less-iff-le, 
le_antisymmetry_iff, 
condition-implies-le, 
minus-add, 
minus-minus, 
minus-one-mul, 
add-swap, 
minus-one-mul-top, 
add-commutes, 
zero-add, 
add_functionality_wrt_le, 
add-associates, 
add-zero, 
le-add-cancel, 
decidable__lt, 
not-lt-2, 
le-add-cancel-alt, 
istype-le, 
istype-less_than, 
subtype_rel_self, 
int_seg_properties, 
absval_wf, 
not-equal-2, 
le_wf, 
equal-wf-base, 
istype-int, 
primrec-wf2, 
sq_stable__le, 
add-mul-special, 
zero-mul, 
istype-nat, 
absval-non-neg, 
le_reflexive, 
eq_int_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
eqff_to_assert, 
bool_cases_sqequal, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
one-mul, 
rem_bounds_z, 
nequal_wf, 
easy-member-int_seg, 
istype-sqequal, 
remainder_wfa, 
not-equal-implies-less, 
two-mul, 
mul-distributes-right, 
omega-shadow, 
mul-distributes, 
mul-commutes, 
mul-associates, 
nat_properties, 
div_rem_sum, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
add_functionality_wrt_eq, 
divide_wfa, 
rem_to_div, 
iff_weakening_equal, 
mul-swap
Rules used in proof : 
cut, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
thin, 
sqequalHypSubstitution, 
setElimination, 
rename, 
productElimination, 
hypothesis, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
natural_numberEquality, 
independent_isectElimination, 
independent_functionElimination, 
voidElimination, 
universeIsType, 
dependent_functionElimination, 
unionElimination, 
applyEquality, 
sqequalRule, 
instantiate, 
because_Cache, 
dependent_set_memberEquality_alt, 
independent_pairFormation, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
addEquality, 
minusEquality, 
Error :memTop, 
productIsType, 
promote_hyp, 
hypothesis_subsumption, 
lambdaEquality_alt, 
functionIsType, 
functionEquality, 
intEquality, 
productEquality, 
baseApply, 
closedConclusion, 
baseClosed, 
setIsType, 
inhabitedIsType, 
imageMemberEquality, 
multiplyEquality, 
equalityElimination, 
dependent_pairFormation_alt, 
equalityIstype, 
cumulativity, 
sqequalBase, 
universeEquality
Latex:
\mforall{}a,b:\mBbbZ{}.
    ((\mexists{}c:\mBbbZ{}.  ((c  *  gcd(a;b))  =  a))
    \mwedge{}  (\mexists{}d:\mBbbZ{}.  ((d  *  gcd(a;b))  =  b))
    \mwedge{}  (\mexists{}s,t:\mBbbZ{}.  (gcd(a;b)  =  ((s  *  a)  +  (t  *  b)))))
Date html generated:
2020_05_19-PM-09_36_09
Last ObjectModification:
2020_01_08-PM-04_39_18
Theory : int_1
Home
Index