Nuprl Lemma : gcd-properties

a,b:ℤ.
  ((∃c:ℤ((c gcd(a;b)) a ∈ ℤ)) ∧ (∃d:ℤ((d gcd(a;b)) b ∈ ℤ)) ∧ (∃s,t:ℤ(gcd(a;b) ((s a) (t b)) ∈ ℤ)))


Proof




Definitions occuring in Statement :  gcd: gcd(a;b) all: x:A. B[x] exists: x:A. B[x] and: P ∧ Q multiply: m add: m int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] int_seg: {i..j-} false: False lelt: i ≤ j < k and: P ∧ Q uall: [x:A]. B[x] member: t ∈ T guard: {T} uimplies: supposing a implies:  Q decidable: Dec(P) or: P ∨ Q subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] less_than: a < b squash: T cand: c∧ B iff: ⇐⇒ Q not: ¬A rev_implies:  Q uiff: uiff(P;Q) subtract: m le: A ≤ B less_than': less_than'(a;b) true: True sq_type: SQType(T) nat: prop: exists: x:A. B[x] sq_stable: SqStable(P) gcd: gcd(a;b) bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff bnot: ¬bb assert: b int_nzero: -o nequal: a ≠ b ∈  ge: i ≥  nat_plus: +
Lemmas referenced :  less_than_transitivity1 less_than_irreflexivity int_seg_wf decidable__int_equal subtract_wf subtype_base_sq set_subtype_base int_subtype_base decidable__le istype-false not-le-2 less-iff-le le_antisymmetry_iff condition-implies-le minus-add minus-minus minus-one-mul add-swap minus-one-mul-top add-commutes zero-add add_functionality_wrt_le add-associates add-zero le-add-cancel decidable__lt not-lt-2 le-add-cancel-alt istype-le istype-less_than subtype_rel_self int_seg_properties absval_wf not-equal-2 le_wf equal-wf-base istype-int primrec-wf2 sq_stable__le add-mul-special zero-mul istype-nat absval-non-neg le_reflexive eq_int_wf eqtt_to_assert assert_of_eq_int eqff_to_assert bool_cases_sqequal bool_wf bool_subtype_base assert-bnot neg_assert_of_eq_int one-mul rem_bounds_z nequal_wf easy-member-int_seg istype-sqequal remainder_wfa not-equal-implies-less two-mul mul-distributes-right omega-shadow mul-distributes mul-commutes mul-associates nat_properties div_rem_sum equal_wf squash_wf true_wf istype-universe add_functionality_wrt_eq divide_wfa rem_to_div iff_weakening_equal mul-swap
Rules used in proof :  cut sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt thin sqequalHypSubstitution setElimination rename productElimination hypothesis introduction extract_by_obid isectElimination hypothesisEquality natural_numberEquality independent_isectElimination independent_functionElimination voidElimination universeIsType dependent_functionElimination unionElimination applyEquality sqequalRule instantiate because_Cache dependent_set_memberEquality_alt independent_pairFormation imageElimination equalityTransitivity equalitySymmetry addEquality minusEquality Error :memTop,  productIsType promote_hyp hypothesis_subsumption lambdaEquality_alt functionIsType functionEquality intEquality productEquality baseApply closedConclusion baseClosed setIsType inhabitedIsType imageMemberEquality multiplyEquality equalityElimination dependent_pairFormation_alt equalityIstype cumulativity sqequalBase universeEquality

Latex:
\mforall{}a,b:\mBbbZ{}.
    ((\mexists{}c:\mBbbZ{}.  ((c  *  gcd(a;b))  =  a))
    \mwedge{}  (\mexists{}d:\mBbbZ{}.  ((d  *  gcd(a;b))  =  b))
    \mwedge{}  (\mexists{}s,t:\mBbbZ{}.  (gcd(a;b)  =  ((s  *  a)  +  (t  *  b)))))



Date html generated: 2020_05_19-PM-09_36_09
Last ObjectModification: 2020_01_08-PM-04_39_18

Theory : int_1


Home Index