Nuprl Lemma : easy-member-int_seg
∀[i,j,a:ℤ].  (j - a ∈ {i..j-}) supposing (((i + a) ≤ j) and 0 < a)
Proof
Definitions occuring in Statement : 
int_seg: {i..j-}
, 
less_than: a < b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
member: t ∈ T
, 
subtract: n - m
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
le: A ≤ B
, 
cand: A c∧ B
, 
less_than: a < b
, 
squash: ↓T
, 
top: Top
, 
subtract: n - m
, 
all: ∀x:A. B[x]
, 
uiff: uiff(P;Q)
, 
nat_plus: ℕ+
, 
less_than': less_than'(a;b)
, 
true: True
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
false: False
, 
decidable: Dec(P)
, 
or: P ∨ Q
Lemmas referenced : 
subtract_wf, 
add-commutes, 
istype-void, 
minus-one-mul, 
istype-le, 
istype-less_than, 
istype-int, 
not-le-2, 
add_functionality_wrt_le, 
le_reflexive, 
minus-one-mul-top, 
add-associates, 
one-mul, 
add-swap, 
add-mul-special, 
zero-mul, 
zero-add, 
add-zero, 
two-mul, 
mul-distributes-right, 
omega-shadow, 
mul-distributes, 
mul-swap, 
mul-associates, 
le-add-cancel, 
less-iff-le, 
not-lt-2, 
minus-add, 
decidable__le, 
decidable__lt
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
dependent_set_memberEquality_alt, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
independent_pairFormation, 
productElimination, 
imageElimination, 
sqequalRule, 
because_Cache, 
isect_memberEquality_alt, 
voidElimination, 
productIsType, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
addEquality, 
isectIsTypeImplies, 
inhabitedIsType, 
natural_numberEquality, 
dependent_functionElimination, 
independent_isectElimination, 
multiplyEquality, 
minusEquality, 
imageMemberEquality, 
baseClosed, 
independent_functionElimination, 
unionElimination
Latex:
\mforall{}[i,j,a:\mBbbZ{}].    (j  -  a  \mmember{}  \{i..j\msupminus{}\})  supposing  (((i  +  a)  \mleq{}  j)  and  0  <  a)
Date html generated:
2020_05_19-PM-09_35_43
Last ObjectModification:
2019_12_08-PM-06_18_58
Theory : arithmetic
Home
Index