Nuprl Lemma : eq_int_eq_false_intro

[i,j:ℤ].  (i =z j) ff supposing ¬(i j ∈ ℤ)


Proof




Definitions occuring in Statement :  eq_int: (i =z j) bfalse: ff uimplies: supposing a uall: [x:A]. B[x] not: ¬A int: sqequal: t equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a squash: T prop: nequal: a ≠ b ∈  true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q sq_type: SQType(T) all: x:A. B[x]
Lemmas referenced :  subtype_base_sq bool_wf bool_subtype_base equal_wf squash_wf true_wf eq_int_eq_false bfalse_wf subtype_rel_self iff_weakening_equal not_wf equal-wf-base int_subtype_base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin instantiate extract_by_obid sqequalHypSubstitution isectElimination cumulativity hypothesis independent_isectElimination applyEquality lambdaEquality imageElimination hypothesisEquality equalityTransitivity equalitySymmetry universeEquality natural_numberEquality sqequalRule imageMemberEquality baseClosed because_Cache productElimination independent_functionElimination dependent_functionElimination axiomSqEquality intEquality isect_memberEquality

Latex:
\mforall{}[i,j:\mBbbZ{}].    (i  =\msubz{}  j)  \msim{}  ff  supposing  \mneg{}(i  =  j)



Date html generated: 2019_06_20-AM-11_33_12
Last ObjectModification: 2018_09_18-PM-02_14_46

Theory : int_1


Home Index