Nuprl Lemma : eq_int_eq_false_intro
∀[i,j:ℤ].  (i =z j) ~ ff supposing ¬(i = j ∈ ℤ)
Proof
Definitions occuring in Statement : 
eq_int: (i =z j)
, 
bfalse: ff
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
, 
int: ℤ
, 
sqequal: s ~ t
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
squash: ↓T
, 
prop: ℙ
, 
nequal: a ≠ b ∈ T 
, 
true: True
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
sq_type: SQType(T)
, 
all: ∀x:A. B[x]
Lemmas referenced : 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
equal_wf, 
squash_wf, 
true_wf, 
eq_int_eq_false, 
bfalse_wf, 
subtype_rel_self, 
iff_weakening_equal, 
not_wf, 
equal-wf-base, 
int_subtype_base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
instantiate, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
cumulativity, 
hypothesis, 
independent_isectElimination, 
applyEquality, 
lambdaEquality, 
imageElimination, 
hypothesisEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
natural_numberEquality, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
because_Cache, 
productElimination, 
independent_functionElimination, 
dependent_functionElimination, 
axiomSqEquality, 
intEquality, 
isect_memberEquality
Latex:
\mforall{}[i,j:\mBbbZ{}].    (i  =\msubz{}  j)  \msim{}  ff  supposing  \mneg{}(i  =  j)
Date html generated:
2019_06_20-AM-11_33_12
Last ObjectModification:
2018_09_18-PM-02_14_46
Theory : int_1
Home
Index