Nuprl Lemma : ite_rw_test

[n:ℕ]. ∀[i:ℕ+n].  False supposing (0 0 ∈ ℤ)) ∧ (n 0 ∈ ℤ))


Proof




Definitions occuring in Statement :  int_seg: {i..j-} nat: uimplies: supposing a uall: [x:A]. B[x] not: ¬A and: P ∧ Q false: False natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a false: False and: P ∧ Q not: ¬A implies:  Q prop: nat:
Lemmas referenced :  not_wf equal-wf-base equal-wf-T-base int_seg_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution productElimination thin hypothesis independent_functionElimination natural_numberEquality voidElimination sqequalRule because_Cache productEquality extract_by_obid isectElimination intEquality baseClosed setElimination rename hypothesisEquality isect_memberEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[i:\mBbbN{}\msupplus{}n].    False  supposing  (\mneg{}(0  =  0))  \mwedge{}  (\mneg{}(n  =  0))



Date html generated: 2018_05_21-PM-00_04_05
Last ObjectModification: 2018_05_19-AM-07_10_44

Theory : int_1


Home Index