Nuprl Lemma : ite_rw_test
∀[n:ℕ]. ∀[i:ℕ+n].  False supposing (¬(0 = 0 ∈ ℤ)) ∧ (¬(n = 0 ∈ ℤ))
Proof
Definitions occuring in Statement : 
int_seg: {i..j-}
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
, 
and: P ∧ Q
, 
false: False
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
false: False
, 
and: P ∧ Q
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
nat: ℕ
Lemmas referenced : 
not_wf, 
equal-wf-base, 
equal-wf-T-base, 
int_seg_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
hypothesis, 
independent_functionElimination, 
natural_numberEquality, 
voidElimination, 
sqequalRule, 
because_Cache, 
productEquality, 
extract_by_obid, 
isectElimination, 
intEquality, 
baseClosed, 
setElimination, 
rename, 
hypothesisEquality, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[i:\mBbbN{}\msupplus{}n].    False  supposing  (\mneg{}(0  =  0))  \mwedge{}  (\mneg{}(n  =  0))
Date html generated:
2018_05_21-PM-00_04_05
Last ObjectModification:
2018_05_19-AM-07_10_44
Theory : int_1
Home
Index