Nuprl Lemma : not-not-all-int_seg-shift

a,b:ℤ. ∀P:{a..b-} ⟶ ℙ.  ((∀i:{a..b-}. (¬¬P[i]))  (¬¬(∀i:{a..b-}. P[i])))


Proof




Definitions occuring in Statement :  int_seg: {i..j-} prop: so_apply: x[s] all: x:A. B[x] not: ¬A implies:  Q function: x:A ⟶ B[x] int:
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T implies:  Q not: ¬A or: P ∨ Q false: False uall: [x:A]. B[x] so_apply: x[s] subtype_rel: A ⊆B prop:
Lemmas referenced :  not-not-all-int_seg-xmiddle int_seg_wf istype-void subtype_rel_self istype-int
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_functionElimination unionElimination voidElimination universeIsType isectElimination sqequalRule functionIsType unionIsType applyEquality because_Cache instantiate universeEquality inhabitedIsType

Latex:
\mforall{}a,b:\mBbbZ{}.  \mforall{}P:\{a..b\msupminus{}\}  {}\mrightarrow{}  \mBbbP{}.    ((\mforall{}i:\{a..b\msupminus{}\}.  (\mneg{}\mneg{}P[i]))  {}\mRightarrow{}  (\mneg{}\mneg{}(\mforall{}i:\{a..b\msupminus{}\}.  P[i])))



Date html generated: 2020_05_19-PM-09_36_12
Last ObjectModification: 2019_11_04-PM-02_02_56

Theory : int_1


Home Index