Nuprl Lemma : sqequaln_sqlen
∀[a,b:Base]. ∀[n:ℕ].  (a ~n b) supposing ((a ≤n b) and (b ≤n a))
Proof
Definitions occuring in Statement : 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
base: Base
, 
sqle_n: s ≤n t
, 
sqequal_n: s ~n t
Definitions unfolded in proof : 
member: t ∈ T
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
base_wf, 
nat_wf, 
sqle_n_wf
Rules used in proof : 
Error :inhabitedIsType, 
hypothesis, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
Error :universeIsType, 
Error :isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
sqequalnSqlen
Latex:
\mforall{}[a,b:Base].  \mforall{}[n:\mBbbN{}].    (a  \msim{}n  b)  supposing  ((a  \mleq{}n  b)  and  (b  \mleq{}n  a))
Date html generated:
2019_06_20-AM-11_33_49
Last ObjectModification:
2018_10_16-PM-03_55_09
Theory : int_1
Home
Index