Nuprl Lemma : sqequaln_symm

[a,b:Base]. ∀[n:ℕ].  ~n supposing ~n a


Proof




Definitions occuring in Statement :  nat: uimplies: supposing a uall: [x:A]. B[x] base: Base sqequal_n: ~n t
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T
Lemmas referenced :  sqequal_n_wf nat_wf base_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  sqequalnSymm hypothesis Error :universeIsType,  cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality Error :inhabitedIsType

Latex:
\mforall{}[a,b:Base].  \mforall{}[n:\mBbbN{}].    a  \msim{}n  b  supposing  b  \msim{}n  a



Date html generated: 2019_06_20-AM-11_33_52
Last ObjectModification: 2018_10_15-PM-05_04_25

Theory : int_1


Home Index