Nuprl Lemma : sqequaln_symm
∀[a,b:Base]. ∀[n:ℕ].  a ~n b supposing b ~n a
Proof
Definitions occuring in Statement : 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
base: Base
, 
sqequal_n: s ~n t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
Lemmas referenced : 
sqequal_n_wf, 
nat_wf, 
base_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
sqequalnSymm, 
hypothesis, 
Error :universeIsType, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
Error :inhabitedIsType
Latex:
\mforall{}[a,b:Base].  \mforall{}[n:\mBbbN{}].    a  \msim{}n  b  supposing  b  \msim{}n  a
Date html generated:
2019_06_20-AM-11_33_52
Last ObjectModification:
2018_10_15-PM-05_04_25
Theory : int_1
Home
Index