Nuprl Lemma : sqlen_sqequaln

[a,b:Base]. ∀[n:ℕ].  a ≤supposing ~n b


Proof




Definitions occuring in Statement :  nat: uimplies: supposing a uall: [x:A]. B[x] base: Base sqle_n: s ≤t sqequal_n: ~n t
Definitions unfolded in proof :  member: t ∈ T uimplies: supposing a uall: [x:A]. B[x]
Lemmas referenced :  base_wf nat_wf sqequal_n_wf
Rules used in proof :  Error :inhabitedIsType,  hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut Error :universeIsType,  Error :isect_memberFormation_alt,  sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution sqlenSqequaln

Latex:
\mforall{}[a,b:Base].  \mforall{}[n:\mBbbN{}].    a  \mleq{}n  b  supposing  a  \msim{}n  b



Date html generated: 2019_06_20-AM-11_33_51
Last ObjectModification: 2018_10_16-PM-02_52_22

Theory : int_1


Home Index