Nuprl Lemma : sqlen_sqequaln
∀[a,b:Base]. ∀[n:ℕ].  a ≤n b supposing a ~n b
Proof
Definitions occuring in Statement : 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
base: Base
, 
sqle_n: s ≤n t
, 
sqequal_n: s ~n t
Definitions unfolded in proof : 
member: t ∈ T
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
base_wf, 
nat_wf, 
sqequal_n_wf
Rules used in proof : 
Error :inhabitedIsType, 
hypothesis, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
Error :universeIsType, 
Error :isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
sqlenSqequaln
Latex:
\mforall{}[a,b:Base].  \mforall{}[n:\mBbbN{}].    a  \mleq{}n  b  supposing  a  \msim{}n  b
Date html generated:
2019_06_20-AM-11_33_51
Last ObjectModification:
2018_10_16-PM-02_52_22
Theory : int_1
Home
Index