Nuprl Lemma : sqntype0

[T:Type]. sqntype(0;T)


Proof




Definitions occuring in Statement :  sqntype: sqntype(n;T) uall: [x:A]. B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] sqntype: sqntype(n;T) all: x:A. B[x] implies:  Q member: t ∈ T top: Top prop:
Lemmas referenced :  sqequal_zero equal-wf-base base_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin isect_memberEquality voidElimination voidEquality hypothesis hypothesisEquality universeEquality

Latex:
\mforall{}[T:Type].  sqntype(0;T)



Date html generated: 2019_06_20-AM-11_33_58
Last ObjectModification: 2018_08_17-PM-03_58_04

Theory : int_1


Home Index