Nuprl Lemma : sqntype0
∀[T:Type]. sqntype(0;T)
Proof
Definitions occuring in Statement : 
sqntype: sqntype(n;T)
, 
uall: ∀[x:A]. B[x]
, 
natural_number: $n
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
sqntype: sqntype(n;T)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
top: Top
, 
prop: ℙ
Lemmas referenced : 
sqequal_zero, 
equal-wf-base, 
base_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
hypothesisEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  sqntype(0;T)
Date html generated:
2019_06_20-AM-11_33_58
Last ObjectModification:
2018_08_17-PM-03_58_04
Theory : int_1
Home
Index