Nuprl Lemma : sqntype_int

[n:ℕ]. sqntype(n;ℤ)


Proof




Definitions occuring in Statement :  sqntype: sqntype(n;T) nat: uall: [x:A]. B[x] int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a
Lemmas referenced :  sqntype_subtype_base int_subtype_base nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin intEquality hypothesisEquality independent_isectElimination hypothesis

Latex:
\mforall{}[n:\mBbbN{}].  sqntype(n;\mBbbZ{})



Date html generated: 2019_06_20-AM-11_34_11
Last ObjectModification: 2018_08_17-PM-03_55_37

Theory : int_1


Home Index