Nuprl Lemma : sqntype_int
∀[n:ℕ]. sqntype(n;ℤ)
Proof
Definitions occuring in Statement : 
sqntype: sqntype(n;T)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
Lemmas referenced : 
sqntype_subtype_base, 
int_subtype_base, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
intEquality, 
hypothesisEquality, 
independent_isectElimination, 
hypothesis
Latex:
\mforall{}[n:\mBbbN{}].  sqntype(n;\mBbbZ{})
Date html generated:
2019_06_20-AM-11_34_11
Last ObjectModification:
2018_08_17-PM-03_55_37
Theory : int_1
Home
Index