Nuprl Lemma : sqntype_subtype
∀[A,B:Type]. ∀[n:ℕ].  (sqntype(n;A)) supposing (sqntype(n;B) and (A ⊆r B))
Proof
Definitions occuring in Statement : 
sqntype: sqntype(n;T)
, 
nat: ℕ
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
sqntype: sqntype(n;T)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
prop: ℙ
Lemmas referenced : 
equal_functionality_wrt_subtype_rel2, 
istype-universe, 
base_wf, 
sqntype_wf, 
subtype_rel_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalHypSubstitution, 
Error :lambdaFormation_alt, 
hypothesis, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
extract_by_obid, 
isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
Error :equalityIsType4, 
because_Cache, 
Error :inhabitedIsType, 
Error :universeIsType, 
sqequalRule, 
Error :lambdaEquality_alt, 
Error :axiomSqequalN, 
Error :functionIsTypeImplies, 
Error :isect_memberEquality_alt, 
universeEquality
Latex:
\mforall{}[A,B:Type].  \mforall{}[n:\mBbbN{}].    (sqntype(n;A))  supposing  (sqntype(n;B)  and  (A  \msubseteq{}r  B))
Date html generated:
2019_06_20-AM-11_34_07
Last ObjectModification:
2018_10_06-AM-11_20_16
Theory : int_1
Home
Index