Nuprl Lemma : stamps35_wf

n:ℕ(stamps35(n) ∈ ∃i:ℕ(∃j:ℕ [((n 8) ((3 i) (5 j)) ∈ ℤ)]))


Proof




Definitions occuring in Statement :  stamps35: stamps35(n) nat: all: x:A. B[x] sq_exists: x:A [B[x]] exists: x:A. B[x] member: t ∈ T multiply: m add: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T stamps35: stamps35(n) subtype_rel: A ⊆B uall: [x:A]. B[x] so_lambda: λ2x.t[x] nat: so_apply: x[s] sq_exists: x:A [B[x]] exists: x:A. B[x] prop:
Lemmas referenced :  stamps-example-ext subtype_rel_self nat_wf exists_wf sq_exists_wf equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalRule applyEquality thin instantiate extract_by_obid hypothesis introduction sqequalHypSubstitution isectElimination functionEquality lambdaEquality intEquality addEquality setElimination rename hypothesisEquality natural_numberEquality multiplyEquality

Latex:
\mforall{}n:\mBbbN{}.  (stamps35(n)  \mmember{}  \mexists{}i:\mBbbN{}.  (\mexists{}j:\mBbbN{}  [((n  +  8)  =  ((3  *  i)  +  (5  *  j)))]))



Date html generated: 2018_05_21-PM-00_04_07
Last ObjectModification: 2018_05_19-AM-07_10_48

Theory : int_1


Home Index