Nuprl Lemma : stamps-example-ext

n:ℕ. ∃i:ℕ(∃j:ℕ [((n 8) ((3 i) (5 j)) ∈ ℤ)])


Proof




Definitions occuring in Statement :  nat: all: x:A. B[x] sq_exists: x:A [B[x]] exists: x:A. B[x] multiply: m add: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  member: t ∈ T stamps-example decidable__le decidable__and uall: [x:A]. B[x] so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) so_apply: x[s1;s2;s3;s4] so_lambda: λ2x.t[x] top: Top so_apply: x[s] uimplies: supposing a strict4: strict4(F) and: P ∧ Q all: x:A. B[x] implies:  Q has-value: (a)↓ prop: guard: {T} or: P ∨ Q squash: T decidable__not decidable__implies decidable__less_than' decidable__false subtract: m
Lemmas referenced :  stamps-example lifting-strict-decide top_wf equal_wf has-value_wf_base base_wf is-exception_wf lifting-strict-less decidable__le decidable__and decidable__not decidable__implies decidable__less_than' decidable__false
Rules used in proof :  introduction sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut instantiate extract_by_obid hypothesis sqequalRule thin sqequalHypSubstitution isectElimination baseClosed isect_memberEquality voidElimination voidEquality independent_isectElimination independent_pairFormation lambdaFormation callbyvalueDecide hypothesisEquality equalityTransitivity equalitySymmetry unionEquality unionElimination sqleReflexivity dependent_functionElimination independent_functionElimination baseApply closedConclusion decideExceptionCases inrFormation because_Cache imageMemberEquality imageElimination exceptionSqequal inlFormation

Latex:
\mforall{}n:\mBbbN{}.  \mexists{}i:\mBbbN{}.  (\mexists{}j:\mBbbN{}  [((n  +  8)  =  ((3  *  i)  +  (5  *  j)))])



Date html generated: 2019_06_20-PM-01_05_04
Last ObjectModification: 2019_06_20-PM-01_00_03

Theory : int_1


Home Index