Nuprl Lemma : uniform-TI-less

[P:ℕ ⟶ ℙ]. uniform-TI(ℕ;x,y.y < x;x.P[x])


Proof




Definitions occuring in Statement :  uniform-TI: uniform-TI(T;x,y.R[x; y];t.Q[t]) nat: less_than: a < b uall: [x:A]. B[x] prop: so_apply: x[s] function: x:A ⟶ B[x]
Definitions unfolded in proof :  uniform-TI: uniform-TI(T;x,y.R[x; y];t.Q[t]) uall: [x:A]. B[x] member: t ∈ T implies:  Q nat: int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B prop: so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B uimplies: supposing a less_than': less_than'(a;b) false: False not: ¬A
Lemmas referenced :  uniform-comp-nat-induction lelt_wf nat_wf less_than_wf uall_wf int_seg_wf int_seg_subtype_nat false_wf
Rules used in proof :  cut lemma_by_obid sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaFormation independent_functionElimination setElimination rename dependent_set_memberEquality independent_pairFormation productElimination setEquality natural_numberEquality lambdaEquality applyEquality independent_isectElimination functionEquality cumulativity universeEquality

Latex:
\mforall{}[P:\mBbbN{}  {}\mrightarrow{}  \mBbbP{}].  uniform-TI(\mBbbN{};x,y.y  <  x;x.P[x])



Date html generated: 2016_05_13-PM-04_03_26
Last ObjectModification: 2015_12_26-AM-10_56_02

Theory : int_1


Home Index