Nuprl Lemma : uniform-TI-less
∀[P:ℕ ⟶ ℙ]. uniform-TI(ℕ;x,y.y < x;x.P[x])
Proof
Definitions occuring in Statement : 
uniform-TI: uniform-TI(T;x,y.R[x; y];t.Q[t])
, 
nat: ℕ
, 
less_than: a < b
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
uniform-TI: uniform-TI(T;x,y.R[x; y];t.Q[t])
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
nat: ℕ
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
le: A ≤ B
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
Lemmas referenced : 
uniform-comp-nat-induction, 
lelt_wf, 
nat_wf, 
less_than_wf, 
uall_wf, 
int_seg_wf, 
int_seg_subtype_nat, 
false_wf
Rules used in proof : 
cut, 
lemma_by_obid, 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaFormation, 
independent_functionElimination, 
setElimination, 
rename, 
dependent_set_memberEquality, 
independent_pairFormation, 
productElimination, 
setEquality, 
natural_numberEquality, 
lambdaEquality, 
applyEquality, 
independent_isectElimination, 
functionEquality, 
cumulativity, 
universeEquality
Latex:
\mforall{}[P:\mBbbN{}  {}\mrightarrow{}  \mBbbP{}].  uniform-TI(\mBbbN{};x,y.y  <  x;x.P[x])
Date html generated:
2016_05_13-PM-04_03_26
Last ObjectModification:
2015_12_26-AM-10_56_02
Theory : int_1
Home
Index