Step
*
1
1
of Lemma
div_unique
1. a : ℕ
2. n : ℕ+
3. p : ℕ
4. q : ℕ
5. (n * p) ≤ a
6. a < n * (p + 1)
7. (n * q) ≤ a
8. a < n * (q + 1)
⊢ p = q ∈ ℤ
BY
{ ((FwdThruLemma `lt_transitivity_2` [5;8] THEN Auto)
THEN (FwdThruLemma `lt_transitivity_2` [6;7] THEN Auto)
THEN (FwdThruLemma `mul_cancel_in_lt` [9] THEN Auto)
THEN FwdThruLemma `mul_cancel_in_lt` [10]
THEN Auto) }
Latex:
Latex:
1. a : \mBbbN{}
2. n : \mBbbN{}\msupplus{}
3. p : \mBbbN{}
4. q : \mBbbN{}
5. (n * p) \mleq{} a
6. a < n * (p + 1)
7. (n * q) \mleq{} a
8. a < n * (q + 1)
\mvdash{} p = q
By
Latex:
((FwdThruLemma `lt\_transitivity\_2` [5;8] THEN Auto)
THEN (FwdThruLemma `lt\_transitivity\_2` [6;7] THEN Auto)
THEN (FwdThruLemma `mul\_cancel\_in\_lt` [9] THEN Auto)
THEN FwdThruLemma `mul\_cancel\_in\_lt` [10]
THEN Auto)
Home
Index