Step
*
1
of Lemma
exact-xover_wf
.....assertion.....
∀d:ℕ
∀[n:ℤ]. ∀[f:{n...} ⟶ 𝔹].
exact-xover(f;n) ∈ {x:ℤ| (n ≤ x) ∧ f x = ff ∧ f (x + 1) = tt}
supposing (∃m:{n..n + d-}. ((∀k:{n..m-}. f k = ff) ∧ (∀k:{m...}. f k = tt))) ∧ f n = ff
BY
{ (CompleteInductionOnNat THEN (UnivCD THENA Auto) THEN RecUnfold `exact-xover` 0) }
1
1. d : ℕ
2. ∀d:ℕd
∀[n:ℤ]. ∀[f:{n...} ⟶ 𝔹].
exact-xover(f;n) ∈ {x:ℤ| (n ≤ x) ∧ f x = ff ∧ f (x + 1) = tt}
supposing (∃m:{n..n + d-}. ((∀k:{n..m-}. f k = ff) ∧ (∀k:{m...}. f k = tt))) ∧ f n = ff
3. n : ℤ
4. f : {n...} ⟶ 𝔹
5. (∃m:{n..n + d-}. ((∀k:{n..m-}. f k = ff) ∧ (∀k:{m...}. f k = tt))) ∧ f n = ff
⊢ let b,a = find-xover(f;n;n;1)
in if b=a + 1 then a else exact-xover(f;a) ∈ {x:ℤ| (n ≤ x) ∧ f x = ff ∧ f (x + 1) = tt}
Latex:
Latex:
.....assertion.....
\mforall{}d:\mBbbN{}
\mforall{}[n:\mBbbZ{}]. \mforall{}[f:\{n...\} {}\mrightarrow{} \mBbbB{}].
exact-xover(f;n) \mmember{} \{x:\mBbbZ{}| (n \mleq{} x) \mwedge{} f x = ff \mwedge{} f (x + 1) = tt\}
supposing (\mexists{}m:\{n..n + d\msupminus{}\}. ((\mforall{}k:\{n..m\msupminus{}\}. f k = ff) \mwedge{} (\mforall{}k:\{m...\}. f k = tt))) \mwedge{} f n = ff
By
Latex:
(CompleteInductionOnNat THEN (UnivCD THENA Auto) THEN RecUnfold `exact-xover` 0)
Home
Index