Step
*
1
1
of Lemma
find-xover-val_wf
.....antecedent.....
1. T : Type
2. value-type(T)
3. test : T ⟶ 𝔹
4. d : ℕ
5. ∀d:ℕd
∀[x:ℤ]. ∀[n:{x...}]. ∀[step:ℕ+]. ∀[f:{x...} ⟶ T].
find-xover-val(test;f;x;n;step) ∈ v:T
× n':{n':ℤ| (n ≤ n') ∧ (v = (f n') ∈ T) ∧ test v = tt}
× {x':ℤ|
((n' = n ∈ ℤ) ∧ (x' = x ∈ ℤ))
∨ (((n ≤ x') ∧ test (f x') = ff) ∧ ((n' = (n + step) ∈ ℤ) ∨ ((n + step) ≤ x')))}
supposing ∃m:{n..n + d-}. ∀k:{m...}. test (f k) = tt
6. x : ℤ
7. n : {x...}
8. step : ℕ+
9. f : {x...} ⟶ T
10. ¬↑(test (f n))
11. m : {n..n + d-}
12. ∀k:{m...}. test (f k) = tt
⊢ ∃m:{n + step..(n + step) + (d - 1)-}. ∀k:{m...}. test (f k) = tt
BY
{ ( Decide ⌜(n + step) ≤ m⌝⋅ THENA Auto) }
1
1. T : Type
2. value-type(T)
3. test : T ⟶ 𝔹
4. d : ℕ
5. ∀d:ℕd
∀[x:ℤ]. ∀[n:{x...}]. ∀[step:ℕ+]. ∀[f:{x...} ⟶ T].
find-xover-val(test;f;x;n;step) ∈ v:T
× n':{n':ℤ| (n ≤ n') ∧ (v = (f n') ∈ T) ∧ test v = tt}
× {x':ℤ|
((n' = n ∈ ℤ) ∧ (x' = x ∈ ℤ))
∨ (((n ≤ x') ∧ test (f x') = ff) ∧ ((n' = (n + step) ∈ ℤ) ∨ ((n + step) ≤ x')))}
supposing ∃m:{n..n + d-}. ∀k:{m...}. test (f k) = tt
6. x : ℤ
7. n : {x...}
8. step : ℕ+
9. f : {x...} ⟶ T
10. ¬↑(test (f n))
11. m : {n..n + d-}
12. ∀k:{m...}. test (f k) = tt
13. (n + step) ≤ m
⊢ ∃m:{n + step..(n + step) + (d - 1)-}. ∀k:{m...}. test (f k) = tt
2
1. T : Type
2. value-type(T)
3. test : T ⟶ 𝔹
4. d : ℕ
5. ∀d:ℕd
∀[x:ℤ]. ∀[n:{x...}]. ∀[step:ℕ+]. ∀[f:{x...} ⟶ T].
find-xover-val(test;f;x;n;step) ∈ v:T
× n':{n':ℤ| (n ≤ n') ∧ (v = (f n') ∈ T) ∧ test v = tt}
× {x':ℤ|
((n' = n ∈ ℤ) ∧ (x' = x ∈ ℤ))
∨ (((n ≤ x') ∧ test (f x') = ff) ∧ ((n' = (n + step) ∈ ℤ) ∨ ((n + step) ≤ x')))}
supposing ∃m:{n..n + d-}. ∀k:{m...}. test (f k) = tt
6. x : ℤ
7. n : {x...}
8. step : ℕ+
9. f : {x...} ⟶ T
10. ¬↑(test (f n))
11. m : {n..n + d-}
12. ∀k:{m...}. test (f k) = tt
13. ¬((n + step) ≤ m)
⊢ ∃m:{n + step..(n + step) + (d - 1)-}. ∀k:{m...}. test (f k) = tt
Latex:
Latex:
.....antecedent.....
1. T : Type
2. value-type(T)
3. test : T {}\mrightarrow{} \mBbbB{}
4. d : \mBbbN{}
5. \mforall{}d:\mBbbN{}d
\mforall{}[x:\mBbbZ{}]. \mforall{}[n:\{x...\}]. \mforall{}[step:\mBbbN{}\msupplus{}]. \mforall{}[f:\{x...\} {}\mrightarrow{} T].
find-xover-val(test;f;x;n;step) \mmember{} v:T
\mtimes{} n':\{n':\mBbbZ{}| (n \mleq{} n') \mwedge{} (v = (f n')) \mwedge{} test v = tt\}
\mtimes{} \{x':\mBbbZ{}|
((n' = n) \mwedge{} (x' = x))
\mvee{} (((n \mleq{} x') \mwedge{} test (f x') = ff) \mwedge{} ((n' = (n + step)) \mvee{} ((n + step) \mleq{} x')))\}
supposing \mexists{}m:\{n..n + d\msupminus{}\}. \mforall{}k:\{m...\}. test (f k) = tt
6. x : \mBbbZ{}
7. n : \{x...\}
8. step : \mBbbN{}\msupplus{}
9. f : \{x...\} {}\mrightarrow{} T
10. \mneg{}\muparrow{}(test (f n))
11. m : \{n..n + d\msupminus{}\}
12. \mforall{}k:\{m...\}. test (f k) = tt
\mvdash{} \mexists{}m:\{n + step..(n + step) + (d - 1)\msupminus{}\}. \mforall{}k:\{m...\}. test (f k) = tt
By
Latex:
( Decide \mkleeneopen{}(n + step) \mleq{} m\mkleeneclose{}\mcdot{} THENA Auto)
Home
Index