Nuprl Lemma : int-prod-single

[f:Top]. (f[x] x < 1) f[0])


Proof




Definitions occuring in Statement :  int-prod: Π(f[x] x < k) uall: [x:A]. B[x] top: Top so_apply: x[s] multiply: m natural_number: $n sqequal: t
Definitions unfolded in proof :  all: x:A. B[x] bfalse: ff ifthenelse: if then else fi  subtract: m eq_int: (i =z j) so_apply: x[s] top: Top so_lambda: λ2x.t[x] prop: implies:  Q not: ¬A false: False less_than': less_than'(a;b) and: P ∧ Q le: A ≤ B nat: member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  top_wf int_prod0_lemma le_wf false_wf int-prod-unroll-hi
Rules used in proof :  sqequalAxiom dependent_functionElimination voidEquality voidElimination isect_memberEquality hypothesisEquality hypothesis lambdaFormation independent_pairFormation natural_numberEquality dependent_set_memberEquality thin isectElimination sqequalHypSubstitution extract_by_obid sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[f:Top].  (\mPi{}(f[x]  |  x  <  1)  \msim{}  1  *  f[0])



Date html generated: 2018_05_21-PM-00_28_55
Last ObjectModification: 2017_12_10-PM-11_39_56

Theory : int_2


Home Index