Nuprl Lemma : int-prod-single
∀[f:Top]. (Π(f[x] | x < 1) ~ 1 * f[0])
Proof
Definitions occuring in Statement : 
int-prod: Π(f[x] | x < k)
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
so_apply: x[s]
, 
multiply: n * m
, 
natural_number: $n
, 
sqequal: s ~ t
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
bfalse: ff
, 
ifthenelse: if b then t else f fi 
, 
subtract: n - m
, 
eq_int: (i =z j)
, 
so_apply: x[s]
, 
top: Top
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
false: False
, 
less_than': less_than'(a;b)
, 
and: P ∧ Q
, 
le: A ≤ B
, 
nat: ℕ
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
top_wf, 
int_prod0_lemma, 
le_wf, 
false_wf, 
int-prod-unroll-hi
Rules used in proof : 
sqequalAxiom, 
dependent_functionElimination, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
hypothesisEquality, 
hypothesis, 
lambdaFormation, 
independent_pairFormation, 
natural_numberEquality, 
dependent_set_memberEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[f:Top].  (\mPi{}(f[x]  |  x  <  1)  \msim{}  1  *  f[0])
Date html generated:
2018_05_21-PM-00_28_55
Last ObjectModification:
2017_12_10-PM-11_39_56
Theory : int_2
Home
Index